Spectral Clustering with Graph Neural Networks for Graph Pooling
频谱聚类(SC)是一种流行的聚类技术,用于在图形上查找强连接的社区。 SC可以在图形神经网络(GNN)中使用,以实现汇总属于同一群集的节点的池化操作。但是,拉普拉斯算子的特征分解是昂贵的,并且由于聚类结果是特定于图的,因此基于SC的合并方法必须为每个新样本执行新的优化。在本文中,我们提出了一种图聚类方法来解决SC的这些局限性。我们制定了标准化minCUT问题的连续松弛,并训练了GNN以计算使该目标最小化的群集分配。我们基于GNN的实现是可区分的,不需要计算频谱分解,并且学习了可以在样本外图上快速评估的聚类函数。从提出的聚类方法出发,我们设计了一种图形池算子,该算子克服了最新的图形池技术的一些重要限制,并在多个有监督和无监督的任务中实现了最佳性能。
Optimal Sampling and Clustering in the Stochastic Block Model
本文研究结构遵循著名的随机块模型(SBM)的网络中联合自适应采样和聚类算法的设计。为了提取隐藏的集群,可以以自适应方式顺序地采样边缘(节点对)之间的交互。收集样本后,学习者返回聚类估计。我们得出了集群恢复率的信息理论上限。这些界限实际上揭示了最佳的顺序边缘采样策略,有趣的是,后者不取决于采样预算,而仅取决于SBM的参数。我们设计了一种与恢复率上限匹配的联合采样和聚类算法。该算法最初使用一部分采样预算来估算SBM参数,并学习最佳采样策略。然后,该策略将指导剩余的采样过程,从而赋予算法最佳的性能。我们在分析和数值上都表明,自适应边缘采样比随机采样(传统上在SBM分析中使用)产生了重要的改进。例如,我们证明了自适应采样显着扩大了SBM参数的区域,其中渐近精确的群集恢复是可行的。
Selective Sampling-based Scalable Sparse Subspace Clustering
稀疏子空间聚类(SSC)将每个数据点表示为数据集中其他数据点的稀疏线性组合。在表示学习步骤中,SSC查找数据点的低维表示,而在频谱聚类步骤中,数据点根据基础子空间聚类。但是,这两个步骤都具有很高的计算和内存复杂性,从而阻止了将SSC应用于大规模数据集。为克服此限制,我们引入了基于选择性采样的可伸缩稀疏子空间聚类(S5C)算法,该算法基于近似子梯度选择子样本,并根据时间和内存要求随数据点的数量线性缩放。除了计算优势外,我们还为S5C的正确性提供了理论保证。我们的理论结果在子样本数量有限的情况下为SSC做出了新的贡献。大量的实验结果证明了我们方法的有效性。
Self-labelling via simultaneous clustering and representation learning
将聚类和表示学习相结合是深度神经网络无监督学习的最有前途的方法之一。但是,这样做会导致退化的解决方案
各种深度聚类方法摘要
最新推荐文章于 2024-07-16 17:38:05 发布