[从零开始学DeepFaceLab-18]: 使用-命令行八大操作步骤-第6步:模型的选择与训练 - 进阶 - 使用“预训练模型”与“模型的预训练”

本文详细介绍了DeepFaceLab中预训练模型的概念、作用,以及如何利用预训练模型进行模型的快速训练。重点讲解了SAEHD和AMP模型的预训练功能启用,以及如何基于预训练模型进行FineTuning,以提升训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言:

第1章 什么是预训练模型与预训练?

1.1 什么是预训练模型pretrained model

1.2 什么是预训练

1.3 预训练为什么能够加速模型训练?

第2章 DeepFaceLab作者提供的预训练模型

2.1 不同模型的策略

2.2  作者为什么没有提供全部训练模型

2.3 如何获取SAEHD、AMP的预训练模型

第3章 如何使能SAEHD、AMP模型的“预训练”功能

第4章 如何基于预训练模型进行训练

第5章 重复利用自己的训练模型反复训练

它山之石


前言:

在基本能过程学习的过程中,通常会使用Quick96模型,该模型值需要几个小时,最多也就是十几个小时,然后Quick96训练出来的模型其分辨率较低的,基本上只适合学习,不适合实际的应用。在实际应用中还需要使用SAEHD和AMP模型,而这两种模型如从头开始训练到训练处可以应用的模型,需要训练的时间时间在“天”的级别,需要几天的时间,很显然,这么长的时间,对于大多数人来讲显然是不合适的,如果能够基于第三方预先训练好的模型的基础之上,针对自己的数据集进行FineTuning,能够极大的降低训练的时间,提升训练的效率。本文就是探讨DeepFaceLab的FineTunning。

第1章 什么是“预训练模型”与“模型的预训练”?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值