保姆级教程安装tensorflow对应的CUDA和CUDRNN

​首先是检查自己的tensorflow版本

输入以下代码

import tensorflow as tf

print("TensorFlow 版本:", tf.__version__)

知道自己的版本之后,需要找到tensorflow对应的cuda版本,要不无法使用,进入下面网址。

官网

然后点击Windows,往下滑动就可以看到对应的版本。

 

如果没有对应的版本,请看下面的图

找到对应的cuDNN和CUDA版本,如果tensorflow版本太新,则看下篇文章tensorflow降版本,如果降版本。

然后点击-CUDA Toolkit Archive | NVIDIA Developer 下载。

然后点击箭头所指。

 

就开始下载安装

 

直接默认,点击ok

 一直下一步就行了。安装完毕之后检查是否安装成功

打开cmd,输入 nvcc -V

出现了你安装的CUDA的版本信息,说明安装成功了 

安装完之后开始配置环境变量

首先找打以下路径

就是你自己安装cuda的路径,复制路径,然后进行下面操作 

:查看环境变量

点击设置–>搜索高级系统设置–>查看环境变量

点击path把路径复制进去,第二个路径是cudnn的环境变量

再来安装cudnn。

 点击下面链接cudnn

点击进去,就会显示这个界面,登陆即可。还有一种不用注册就能下载的方式是查看下一篇文章

不用注册下载cudnn

  

然后验证即可 

继续点击,然后找到我们对应的版本,前面的图有,可以往上翻找, 

找到对应的版本之后,点击下载即可

Windows下载Windows,其余的自己调整吧

 下载完成是一个压缩包,解压即可

 

其中包括了bin、include、lib这三个文件夹和一个.txt文本文件。接下来要做的就是将这三个文件夹(不包过那个.txt文本文件)拷贝到之前下载的cuda对应的子路径中,具体如下 

 

就是这里面所有文件复制到 cuda的文件夹里面

上面三个文件一一复制,bin就放到cuda的bin文件夹里面 ,include一样放到cuda的include文件夹里面,lib同样处理。然后处理环境变量。

 把路径复制进去。然后找到第二个路径

继续复制路径进行上面环境变量配置。 配置完毕点击确定即可。

然后打开pycharm输入下面代码查看可以使用的gpu。

import tensorflow as tf

# 创建会话
with tf.compat.v1.Session() as sess:
    # 获取GPU设备列表
    gpu_devices = tf.config.experimental.list_physical_devices('GPU')
    if gpu_devices:
        for gpu_device in gpu_devices:
            print("GPU 设备可用:", gpu_device)
    else:
        print("没有找到可用的GPU设备。")

安装成功 

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.支持mkl,无MPI; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:/home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: hp@dla:~/work/ts_compile/tensorflow$ bazel build --config=opt --config=mkl --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值