欧几里得距离

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

  在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

  d = sqrt((x1-x2)^+(y1-y2)^)

  三维的公式是

  d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)

  推广到n维空间,欧式距离的公式是

  d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

  xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

  n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

  欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

  所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

  欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

  所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

  欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

  ========

  欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。

### 实现欧几里得距离计算 以下是基于 Python 编程语言实现的欧几里得距离计算方法。该函数支持任意维度的空间,能够处理 n 维向量间的距离计算。 ```python import numpy as np def calculate_euclidean_distance(point_a, point_b): """ 计算两点之间的欧几里得距离 参数: point_a - 数组或列表形式表示的第一个点坐标 point_b - 数组或列表形式表示的第二个点坐标 返回值: 距离 - 浮点数,代表两点多维空间中的欧几里得距离 """ if len(point_a) != len(point_b): raise ValueError("输入的两个点必须具有相同的维度") # 输入校验[^1] distance = np.sqrt(np.sum((np.array(point_a) - np.array(point_b)) ** 2)) return distance ``` 上述代码通过 `numpy` 库实现了高效的数值运算,利用了矢量化操作来简化复杂度并提升性能。此方法不仅限于二维或三维空间,在更高维度的数据集上同样适用[^4]。 #### 使用示例 下面展示了如何调用以上定义好的函数来进行不同场景下的欧氏距离求解: ##### 一维情况 ```python point_x = [3] point_y = [7] result = calculate_euclidean_distance(point_x, point_y) print(f"一维情况下 {point_x} 和 {point_y} 的欧几里得距离为:{result}") ``` ##### 二维情况 ```python point_p = [1, 2] point_q = [4, 6] distance_2d = calculate_euclidean_distance(point_p, point_q) print(f"{point_p} 和 {point_q} 在二维平面上的距离为:{distance_2d}") # 输出应接近5.0依据具体浮点精度设置而定. ``` ##### 高维(如四维) ```python vector_u = [1, 2, 3, 4] vector_v = [-1, -2, -3, -4] high_dimensional_dist = calculate_euclidean_distance(vector_u, vector_v) print(f"高维向量 {vector_u} 和 {vector_v} 的欧几里得距离为:{high_dimensional_dist}") ``` 这种方法遵循通用原则,即当给定点 A=(a₁,a₂,…,an) 及 B=(b₁,b₂,…,bn),则它们间欧几里德间距 d(A,B)=√[(ai-bi)^2]+...+(an-bn)^2][^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值