欧几里得距离 曼哈坦距离 明考斯基距离

欧几里得距离:

d(i,j) = (|xi1-xj1|2+|xi2-xj2|2+……+|xip-xjp|2)1/2

这里i=(xi1,xi2,……,xip)和j=(xj1,xj2,……,xjp)是两个p维的数据对象。

 

曼哈坦距离

d(i,j)=|xi1-xj1|+|xi2-xj2|+……|xip-xjp|

 

上面的两个公式必须满足下面的条件:

d(i,j)≧0:距离非负。

d(i,i)=0:对象与自身的距离为0。

d(i,j)=d(j,i):距离函数具有对称性。

d(i,j)≦d(i,h)+d(h,j):对象i到对象j的距离小于等于途经其他任何对象h的距离之和。

 

 

明考斯基距离

是以上两中距离计算公式的概括,其具体的公式如下:

d(i,j) = (|xi1-xj1|q+|xi2-xj2|q+……+|xip-xjp|q)1/q

当q=1时该公式就是曼哈坦距离公式;当q=2时,是欧几里得距离公式。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值