欧几里得距离(Euclidean Distance)也称L2距离(L2 Distance),是一种常用的几何距离度量方法,用来计算两个点之间的直线距离。在二维或更高维空间中,欧几里得距离可以看作是“最短路径”的概念。它在机器学习、图像处理、模式识别、聚类分析等领域有广泛的应用。
1. 欧几里得距离的定义
给定两个向量或点 A = ( x 1 , x 2 , … , x n ) \mathbf{A} = (x_1, x_2, \dots, x_n) A=(x1,x2,…,xn) 和 B = ( y 1 , y 2 , … , y n ) \mathbf{B} = (y_1, y_2, \dots, y_n) B=(y1,y2,…,yn),欧几里得距离的公式为:
d ( A , B ) = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ⋯ + ( x n − y n ) 2 d(\mathbf{A}, \mathbf{B}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} d(A,B)=(x1−y1)2+(x2−y2)2+⋯+(xn−yn)2
或者更一般的形式是:
d ( A , B ) = ∥ A − B ∥ 2 d(\mathbf{A}, \mathbf{B}) = \|\mathbf{A} - \mathbf{B}\|_2 d(A,B)=∥A−B∥2
其中, ∥ ⋅ ∥ 2 \|\cdot\|_2