拉格朗日函数、对偶上升法、对偶分解法

本文详细介绍了拉格朗日函数在解决约束优化问题中的应用,包括拉格朗日乘子法和KKT条件。此外,还讨论了对偶上升法和对偶分解法,阐述了如何通过求解对偶问题来找到原问题的最优解,并通过迭代更新逐步优化解的过程。
摘要由CSDN通过智能技术生成

拉格朗日函数

用于解决满足约束条件的最值问题
注意,该方法均只能保证求得的结果是必要条件。只有当原函数是凸函数时,才能保证求得的结果是充要条件

拉格朗日乘子法

适用于具有等式约束最大值/最小值问题

minf(x)s.t.ormaxf(x)φi(x)=0,i=1,2,,n}{ L(x,λ)=f(x)+ni=1λiφi(x)L(x,λ)=0(1) (1) min f ( x ) or max f ( x ) s.t. φ i ( x ) = 0 , i = 1 , 2 , … , n } ⇒ { L ( x , λ ) = f ( x ) + ∑ i = 1 n λ i φ i ( x ) ∇ L ( x , λ ) = 0

其中 L(x,λ) L ( x , λ ) 被称为拉格朗日函数,系数 λ λ 被称为拉格朗日乘子或者对偶变量。通过 计算后,可得到候选集,然后从候选集中验算选择满足条件的结果即可。( :依次对函数所有自变量求偏导)

KKT条件

适用于同时具有等式约束不等式约束最小值问题

mins.t.f(x)φi(x)=0,i=1,2,,nhj(x)0,j=1,2,,mL(x,λ,ι)=f(x)+i=1nλiφi(x)+j=1mιjhj(x)(2) (2) min f ( x ) s.t. φ i ( x ) = 0 , i = 1 , 2 , … , n h j ( x ) ≤ 0 , j = 1 , 2 , … , m } ⇒ L ( x , λ , ι ) = f ( x ) + ∑ i = 1 n λ i φ i ( x ) + ∑ j = 1 m ι j h j ( x )

上述式子成立的 必要前提是KKT条件:
KKT s.t.L(x,λ,ι)xλi(x)=0,i=1,2,,nιjhj(x)=0,ιj0,j=1,2,,m(3) (3) KKT s.t. L ( x , λ , ι ) 对 x 求 偏 导 存 在 λ i ( x ) = 0 , i = 1 , 2 , … , n ι j h j ( x ) = 0 , ι j ≥ 0 , j = 1 , 2 , … , m

其中 λ,ι λ , ι 被称为拉格朗日乘子或者对偶变量

下面直观地说下为什么会有第三个条件要成立
由于 ιj0,hj(x)0 ι j ≥ 0 , h j ( x ) ≤ 0 ,所以 ιjhj(x)0 ι j h j ( x ) ≤ 0 ;又因为 λi(x)=0 λ i ( x ) = 0 ,所以 L(x,λ,ι) L ( x , λ , ι ) 仅有在 ιjhj(x)=0 ι j h j ( x ) = 0 下才能取得最大值,故这是KKT第三个条件必须要成立的原因——即第三个条件满足时,它意味着有 maxL(x,λ,ι)=f(x) max L ( x , λ , ι ) = f ( x ) ,接下来就是求解 minf(x) min f ( x ) ,所以该过程又可记为: minf(x)=minxmaxλ,

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值