【优化】对偶上升法(Dual Ascent)超简说明

本文提供了一个简洁的对偶上升法解释,适用于那些希望了解如何通过对偶问题解决复杂优化问题的读者。首先介绍了拉格朗日量和对偶函数的概念,然后阐述了对偶问题与原问题之间的关系,特别是当强对偶条件成立时的情况。最后,详细说明了对偶上升法的迭代过程,包括如何更新对偶变量以逼近原问题的最优解。
摘要由CSDN通过智能技术生成

本文从便于理解的角度介绍对偶上升法,略去大部分数学推导,目的是帮助大家看懂论文中的相关部分。

阅读本文前,请先参看这篇博客《共轭函数超简说明》

对偶函数1

也称为拉格朗日对偶函数(Lagrange dual function)。

拉格朗日量

考虑定义域 D D D上的最小化问题:
m i n i m i z e   f 0 ( x ) , x ∈ D minimize\ f_0(x), x\in D minimize f0(x),xD

m m m个不等式约束,以及 p p p个等式约束:
f i ( x ) ≤ 0 , i = 1 , 2... m f_i(x)\leq0, i=1,2...m fi(x)0,i=1,2...m

h i ( x ) = 0 , i = 1 , 2... p h_i(x)=0, i=1,2...p hi(x)=0,i=1,2...p

这个最优化问题的拉格朗日量(Lagrangian)为:
L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x) + \sum_{i=1}^p\nu_ih_i(x) L(x,λ,ν)=f0(x)+i=1mλifi(x)+i=1pνihi(x)

其物理意义参见这篇博客《拉格朗日乘子法超简说明》

其中 λ , ν \lambda, \nu λ,ν称为拉格朗日乘子(Lagrange multiplier)或者对偶变量(dual variable), x x x称为原变量(primal variable)。

拉格朗日量是关于 x , λ , ν x,\lambda, \nu x,λ,ν的函数。

拉格朗日对偶函数

对于定义域 D D D x x x的所有取值,拉格朗日量的最小值即为拉格朗日对偶函数(dual function):
g ( λ , ν ) = inf ⁡ x ∈ D L ( x , λ , ν ) g(\lambda, \nu)=\inf_{x\in D}L(x,\lambda, \nu) g(λ,ν)=xDinfL(x,λ,ν)

拉格朗日对偶函数是关于对偶变量 λ , ν \lambda, \nu λ,ν的函数

拉格朗日对偶函数可以看做是 x x x取不同值时一族曲线的下界(绿线)。
这里写图片描述

λ ≥ 0 \lambda\geq0 λ0时,对于最优化问题的解 x ˉ \

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值