YOLO(You Only Look Once)算法原理
前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。
系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4 & YOLO.v5算法原理详解
4. YOLO.v4 & YOLO.v5
4.1 基本概述
论文参考:YOLOv4: Optimal Speed and Accuracy of Object Detection
回顾 yolo 发展过程:
- yolo v1 创新性提出了目标检测新框架,即 yolo 横空出世,那时候性能还很薄弱;
- yolo v2 通过加入各种技巧,使得 yolo 性能有了跟其它主流目标检测网络较劲的底气;
- yolo v3 基础网络的改变,大大提高了其性能,同时构建出了 yolo 的经典框架;至此,大厦已立。
从性能数据上看,yolo v3 已经是个很成熟很好用的网络了,具有较快检测速度和较高准确率;
事实上,也确会如此,现在 yolo v3 仍旧被诸多目标检测者广泛使用在诸多检测任务中。
AI 发展如此迅速,以至于各种网络训练、建构等小技巧层出不穷,研究者们一直在向着更快、更准的方向前进。
基于这样的背景,yolo v4 就是集技巧之大成者,