libtorch学习笔记(17)- ResNet50 FPN以及如何应用于Faster-RCNN

5 篇文章 0 订阅
5 篇文章 3 订阅

什么是FPN

FPN,即Feature Pyramid Networks,是一种多尺寸,金字塔结构深度学习网络,使用了FPN的Faster-RCNN,其测试结果超过大部分single-model,包括COCO 2016年挑战的获胜模型。其优势是对小尺寸对象的检测。
在这里插入图片描述

FPN 代码解读

torchvision中包含了ResNet50 FPN完整的源代码(这里参考的是torchvision 0.7.0里面的代码),这里就解读一下对应的实现,为了解释流畅,尽量采用ResNet-50中的layer name,以及对应的参数:
在这里插入图片描述
这里画了一个全局图,将各个卷积层都标识出来,以便于更好的理解FPN:
在这里插入图片描述

这里左边对应的是layer name,比如conv5_x,这是和ResNet表中layer name可以对应起来。左边的部分称为Bottom-up pathway,右边称为Top-down pathway,ResNet从conv2_x~conv5_x,每层的输出都会输出一份到右边的pathway,这里称之为lateral connections,总的来说可以用下面公式表示表示FPN:
F P N = T o p - d o w n p a t h w a y + l a t e r l c o n n e c t i o n s FPN = {Top\text{-}down\kern{0.4em}pathway} + {laterl\kern{0.4em}connections} FPN=Top-downpathway+laterlconnections
这是对应FPN结构:

  (fpn): FeaturePyramidNetwork(
    (inner_blocks): ModuleList(
      (0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (3): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
    )
    (layer_blocks): ModuleList(
      (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (extra_blocks): LastLevelMaxPool()
  )

FPN处理数据的代码看看如下代码,就能知道对应的流程:

class FeaturePyramidNetwork(nn.Module):
	......
    def forward(self, x):
        # type: (Dict[str, Tensor]) -> Dict[str, Tensor]
        """
        Computes the FPN for a set of feature maps.

        Arguments:
            x (OrderedDict[Tensor]): feature maps for each feature level.

        Returns:
            results (OrderedDict[Tensor]): feature maps after FPN layers.
                They are ordered from highest resolution first.
        """
        # unpack OrderedDict into two lists for easier handling
        names = list(x.keys())
        x = list(x.values())

        last_inner = self.get_result_from_inner_blocks(x[-1], -1)
        results = []
        results.append(self.get_result_from_layer_blocks(last_inner, -1))

        for idx in range(len(x) - 2, -1, -1):
            inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)
            feat_shape = inner_lateral.shape[-2:]
            inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")
            last_inner = inner_lateral + inner_top_down
            results.insert(0, self.get_result_from_layer_blocks(last_inner, idx))

        if self.extra_blocks is not None:
            results, names = self.extra_blocks(results, x, names)

        # make it back an OrderedDict
        out = OrderedDict([(k, v) for k, v in zip(names, results)])

        return out

这里要指出来的是,如何在pytorch中实现2x up:

F.interpolate(last_inner, size=feat_shape, mode="nearest")

这里feat_shape就是2x up之后的shape.
另外一个需要指出的是results,就是存放了每层layer_block_conv的输出,然后送入RPN网络进行背景前景二分类和Bounding-Box回归,在top层支持检测出大的object,越往下越小的对象将被检测出来。

FPN中的Faster-RCNN Anchor

Faster-RCNN有3种scale,3种比例,每个点总共有9种Anchors:
在这里插入图片描述

[[ -84.  -40.   99.   55.]
 [-176.  -88.  191.  103.]
 [-360. -184.  375.  199.]
 [ -56.  -56.   71.   71.]    #128x128
 [-120. -120.  135.  135.]    #256x256
 [-248. -248.  263.  263.]    #512x512
 [ -36.  -80.   51.   95.]
 [ -80. -168.   95.  183.]
 [-168. -344.  183.  359.]]

FPN种组织的方式略微不同, 每层只有三个Anchor,总共会在5层上进行RPN处理,所以每个点在所有特征图上总共有15个Anchor,比如针对一张800x1216的图片:

Layeranchor_scalesaspect_ratiosAnchor CountsSize of feature-map of AnchorsNumber of Anchors
layer_block_conv#0 3 2 2 32^2 322{2:1, 1:1, 1:2}3200x304182400
layer_block_conv#1 6 4 2 64^2 642{2:1, 1:1, 1:2}3100x15245600
layer_block_conv#2 12 8 2 128^2 1282{2:1, 1:1, 1:2}350x7611400
layer_block_conv#3 25 6 2 256^2 2562{2:1, 1:1, 1:2}325x382850
LastLevelMaxPool 51 2 2 512^2 5122{2:1, 1:1, 1:2}313x19741
Total242991

在这里插入图片描述

  • 15
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
PyTorch 中使用 `faster_rcnn_resnet50_fpn` 模型,可以按照以下步骤进行: 1. 安装 PyTorchTorchVision 库(如果未安装的话)。 2. 导入必要的库和模块: ```python import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor ``` 3. 加载预训练模型 `faster_rcnn_resnet50_fpn`: ```python model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) ``` 4. 修改模型的分类器,将其调整为适合你的任务。由于 `faster_rcnn_resnet50_fpn` 是一个目标检测模型,它的分类器通常是用来检测物体类别的。如果你的任务不需要检测物体类别,可以将分类器替换为一个只有一个输出的线性层: ```python num_classes = 1 # 只检测一个类别 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) ``` 5. 将模型转换为训练模式,并将其移动到所选设备(如GPU)上: ```python device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) model.train() # 转换为训练模式 ``` 6. 训练模型,可以使用自己的数据集来训练模型,或者使用 TorchVision 中的数据集,如 Coco 或 Pascal VOC 数据集。 7. 在测试阶段,可以使用以下代码来检测图像中的物体: ```python # 定义图像 image = Image.open('test.jpg') # 转换为Tensor,并将其移动到设备上 image_tensor = torchvision.transforms.functional.to_tensor(image) image_tensor = image_tensor.to(device) # 执行推理 model.eval() with torch.no_grad(): outputs = model([image_tensor]) # 处理输出 boxes = outputs[0]['boxes'].cpu().numpy() # 物体框 scores = outputs[0]['scores'].cpu().numpy() # 物体分数 ``` 需要注意的是,`faster_rcnn_resnet50_fpn` 是一个较大的模型,需要较高的计算资源和训练时间。在训练和测试时,建议使用GPU来加速计算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值