LFU LRU和TinyLFU

LFU

Least Frequently Used。在数据访问随时间概率不变时,这种缓存的命中率是最高的。而且LFU的成本也是最高的。

在这里插入图片描述

LRU

依赖于“时间局部性”的一种替代LFU的缓存方案叫做LRU,LRU中最近被访问的数据项都会被插入缓存,而当缓存满时,最久未被访问的会被淘汰。相比于LFU,LRU的性能会更高,而且自动适应数据的时间局部性,并且可以应对数据的突发流量。但是在实际的场景中,LRU需要更大的缓存空间,才能和LFU达到相同的缓存命中率。

LRU的典型实现如下
在这里插入图片描述
对于访问的节点,移送到/建立在链表开头。容量不足的时候,淘汰尾指针对应的节点。

SLRU

SLRU cache is divided into two segments, a probationary segment and a protected segment. Lines in each segment are ordered from the most to the least recently accessed. Data from misses is added to the cache at the most recently accessed end of the probationary segment. Hits are removed from wherever they currently reside and added to the most recently accessed end of the protected segment. Lines in the protected segment have thus been accessed at least twice. The protected segment is finite, so migration of a line from the probationary segment to the protected segment may force the migration of the LRU line in the protected segment to the most recently used (MRU) end of the probationary segment, giving this line another chance to be accessed before being replaced. The size limit on the protected segment is an SLRU parameter that varies according to the I/O workload patterns. Whenever data must be discarded from the cache, lines are obtained from the LRU end of the probationary segment

SLRU被分为两个段,试用段和保护段。新数据会被加到试用段里。如果试用段或者保护段的数据再次被命中,那么数据会被加入到保护段的头部。保护段的大小是有限的。如果需要清除数据,那么数据会从保护段的末尾开始清除。

TinyLFU

在这里插入图片描述
大概的思路就是,新增一个新的元素时,判断使用该元素替换一个旧元素,是否能够提高缓存命中率。为了做到这一点,tinyLFU需要维护相当长的一段历史时期内数据项访问的频率统计信息。为了做到这一点,我们使用了CBF(计数布隆过滤器)。
在这里插入图片描述

Window-TinyLFU


实际上就是结合了LRU和LFU

LFU (Least Frequently Used) LRU (Least Recently Used) 都是常见的缓存淘汰策略,它们可以用 PriorityQueue(优先队列)来实现。 LFU 的思想是,当缓存空间满时,淘汰掉最不经常使用的缓存。具体实现时,我们可以使用一个字典来记录每个缓存的访问次数,然后将缓存按照访问次数从小到大排序,淘汰访问次数最小的缓存LRU 的思想是,当缓存空间满时,淘汰最近最少使用的缓存。具体实现时,我们可以使用一个双向链表一个字典来记录缓存的顺序存储的位置。每当访问一个缓存时,将其移动到链表头部;当缓存空间满时,淘汰链表尾部的缓存。 下面是使用 PriorityQueue 实现 LFU LRU 的 Python 代码示例: LFU: ```python import heapq class LFUCache: def __init__(self, capacity: int): self.capacity = capacity self.cache = {} self.freq = {} self.count = 0 def get(self, key: int) -> int: if key not in self.cache: return -1 self.freq[key] += 1 heapq.heapify(self.cache[key]) return self.cache[key][0] def put(self, key: int, value: int) -> None: if self.capacity == 0: return if key in self.cache: self.cache[key].append(value) self.freq[key] += 1 heapq.heapify(self.cache[key]) else: if self.count == self.capacity: min_freq = min(self.freq.values()) for k, v in self.freq.items(): if v == min_freq: del self.cache[k] del self.freq[k] break self.count -= 1 self.cache[key] = [value] self.freq[key] = 1 self.count += 1 ``` LRU: ```python class LRUCache: def __init__(self, capacity: int): self.capacity = capacity self.cache = {} self.head = Node(0, 0) self.tail = Node(0, 0) self.head.next = self.tail self.tail.prev = self.head def get(self, key: int) -> int: if key not in self.cache: return -1 node = self.cache[key] self._remove(node) self._add(node) return node.val def put(self, key: int, value: int) -> None: if key in self.cache: self._remove(self.cache[key]) node = Node(key, value) self.cache[key] = node self._add(node) if len(self.cache) > self.capacity: node = self.head.next self._remove(node) del self.cache[node.key] def _remove(self, node): node.prev.next = node.next node.next.prev = node.prev def _add(self, node): node.prev = self.tail.prev node.next = self.tail self.tail.prev.next = node self.tail.prev = node class Node: def __init__(self, key, val): self.key = key self.val = val self.prev = None self.next = None ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值