第T3周:TensorFlow构建CNN网络模型实现天气识别

目标
搭建CNN网络模型实现多云、下雨、晴、日出四种天气状态的识别,并用真实天气做预测
具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
框 架: Tensorflow
**(二)具体步骤:

1. 使用GPU

之前的GPU一直没检测出来 ,今天参考windows安装tensorflow-gpu / CUDA / cuDNN - 前端大兵 - 博客园Build from source on Windows | TensorFlow,主要的就是保证python版本、cuda版本, cuDNN以及Tensorflow版本一致。我的Python版本是3.8,cuda安装的是11.2,查看如下:
image.png
那么cudnn和tensowflow-gpu的版本也找到了,直接下载安装就成。看成果:

import os  
import PIL  
import pathlib  
import matplotlib.pyplot as plt  
import numpy as np  
import tensorflow as tf  
from tensorflow import keras  
from tensorflow.keras import layers, models 
  
gpus = tf.config.list_physical_devices("GPU")  
print(gpus)  
if gpus:  
    gpu0 = gpus[0]  
    # print(gpu0)  
    tf.config.experimental.set_memory_growth(gpu0, True)  
    tf.config.set_visible_devices([gpu0], "GPU")

image.png
解决。

2.查看数据

在工程根目录下创建了一个datasets目录,然后下面有一个weather_photos的子目录,再下面分为cloudy(多云)、rain(雨天)、shine(晴天)和sunrise(日出)4种天气类型。
image.png

# 导入数据集  
data_dir = "datasets/weather_photos/"  
data_dir = pathlib.Path(data_dir)   # 将目录转换成pathlib.Path类对象,以便使用Path的各种方法  
print(data_dir)  
  
# 查看数据  
# 查看目录下所在.jpg文件的数据。glob方法是按.jpg去匹配所有文件。要能够使用glob方法,需要上当是pathlib.Path类的对象。  
image_count = len(list(data_dir.glob('*/*.jpg')))  
print("图片总数为:", image_count)  
# 看一下shine目录下的图片  
shine = list(data_dir.glob('sunrise/*.jpg'))  
print("shine目录共有:%d 个图片" % len(shine))  
im = PIL.Image.open(str(shine[0]))  
im.show()

image.png
image.png

3.加载数据

使用image_dataset_from_directory方法将文件目录中的数据加载到tf.data.Dataset中.

# 加载数据  
batch_size = 32  
image_height = 180  
image_width = 180  
  
train_ds = tf.keras.preprocessing.image_dataset_from_directory(  
    data_dir,       # 文件所在目录  
    validation_split=0.2,  
    subset="training",  
    seed=123,  
    image_size=(image_height, image_width),  
    batch_size=batch_size  
)  
  
val_ds = tf.keras.preprocessing.image_dataset_from_directory(  
    data_dir,  
    validation_split=0.2,  
    subset="validation",  
    seed=123,  
    image_size=(image_height, image_width),  
    batch_size=batch_size  
)  
#print(train_ds, val_ds)  
class_names = train_ds.class_names  
print(class_names)

image.png

4.配置数据集

# 预提取数据,加速运行  
AUTOTUNE = tf.data.AUTOTUNE  
  
# cache():将数据加载到内存中,加速运行  
# shuffle():打乱数据,参考:https://zhuanlan.zhihu.com/p/42417456  
# prefetch():预取数据,加速运行  
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)  
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

5.构建CNN网络

image.png

# 构建CNN网络  
num_classes = 4  
model = models.Sequential([  
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_height, image_width, 3)),  
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(image_height, image_width, 3)),  
    layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样  
    layers.Conv2D(32, (3, 3), activation='relu'),   # 卷积层2,卷积核3*3  
    layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样  
    layers.Conv2D(64, (3, 3), activation='relu'),    # 卷积层3,卷积核3*3  
    layers.Dropout(0.3),    # 让神经元以一定的概率停止工作,防止过拟合,提高模型的泛化能力。  
  
    layers.Flatten(),   # Flatten层,连接卷积层与全连接层  
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取  
    layers.Dense(num_classes)    # 输出层,输出预期结果  
])  
  
print(model.summary())
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 180, 180, 3)       0         
                                                                 
 conv2d (Conv2D)             (None, 178, 178, 16)      448       
                                                                 
 average_pooling2d (AverageP  (None, 89, 89, 16)       0         
 ooling2D)                                                       
                                                                 
 conv2d_1 (Conv2D)           (None, 87, 87, 32)        4640      
                                                                 
 average_pooling2d_1 (Averag  (None, 43, 43, 32)       0         
 ePooling2D)                                                     
                                                                 
 conv2d_2 (Conv2D)           (None, 41, 41, 64)        18496     
                                                                 
 dropout (Dropout)           (None, 41, 41, 64)        0         
                                                                 
 flatten (Flatten)           (None, 107584)            0         
                                                                 
 dense (Dense)               (None, 128)               13770880  
                                                                 
 dense_1 (Dense)             (None, 4)                 516       
                                                                 
=================================================================
Total params: 13,794,980
Trainable params: 13,794,980
Non-trainable params: 0
_________________________________________________________________

6.编译

# 编译  
# 设置优化器  
opt = tf.keras.optimizers.Adam(learning_rate=0.001)  
# 设置损失函数  
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)  
model.compile(optimizer=opt,  
              loss=loss,  
              metrics=['accuracy'])

7.训练模型

# 训练模型  
epochs = 10  
history = model.fit(  
    train_ds,  
    validation_data=val_ds,  
    epochs=epochs  
)
Epoch 1/10
29/29 [==============================] - 7s 34ms/step - loss: 1.3898 - accuracy: 0.5567 - val_loss: 0.7499 - val_accuracy: 0.6311
Epoch 2/10
29/29 [==============================] - 0s 17ms/step - loss: 0.4811 - accuracy: 0.8222 - val_loss: 0.4955 - val_accuracy: 0.8089
Epoch 3/10
29/29 [==============================] - 1s 18ms/step - loss: 0.3696 - accuracy: 0.8644 - val_loss: 0.4990 - val_accuracy: 0.8044
Epoch 4/10
29/29 [==============================] - 0s 17ms/step - loss: 0.2541 - accuracy: 0.8967 - val_loss: 0.5235 - val_accuracy: 0.8089
Epoch 5/10
29/29 [==============================] - 0s 17ms/step - loss: 0.3015 - accuracy: 0.8911 - val_loss: 0.5760 - val_accuracy: 0.7822
Epoch 6/10
29/29 [==============================] - 0s 17ms/step - loss: 0.2394 - accuracy: 0.9122 - val_loss: 0.6048 - val_accuracy: 0.8044
Epoch 7/10
29/29 [==============================] - 0s 17ms/step - loss: 0.2118 - accuracy: 0.9311 - val_loss: 0.4987 - val_accuracy: 0.8000
Epoch 8/10
29/29 [==============================] - 0s 17ms/step - loss: 0.1307 - accuracy: 0.9544 - val_loss: 0.4711 - val_accuracy: 0.8311
Epoch 9/10
29/29 [==============================] - 0s 17ms/step - loss: 0.0958 - accuracy: 0.9667 - val_loss: 0.6813 - val_accuracy: 0.8000
Epoch 10/10
29/29 [==============================] - 0s 17ms/step - loss: 0.1063 - accuracy: 0.9678 - val_loss: 0.4737 - val_accuracy: 0.8489

8.模型评估

# 模型评估  
acc = history.history['accuracy']  
val_acc = history.history['val_accuracy']  
  
loss = history.history['loss']  
val_loss = history.history['val_loss']  
  
epochs_range = range(epochs)  
  
plt.figure(figsize=(12, 4))  
plt.subplot(1, 2, 1)  
plt.plot(epochs_range, acc, label='Training Accuracy')  
plt.plot(epochs_range, val_acc, label='Validation Accuracy')  
plt.legend(loc='lower right')  
plt.title('Training and Validation Accuracy')  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, loss, label='Training Loss')  
plt.plot(epochs_range, val_loss, label='Validation Loss')  
plt.legend(loc='upper right')  
plt.title('Training and Validation Loss')  
  
plt.show()

image.png

9.数据增强

从上面的模型评估上看,训练准确率远高于验证准确率。是不是就是传说中的过拟合现象,查阅资料发现,过拟合的情况有很多,其中数据量不足也是其中一种原因,可以通过数据增加的方式,将原有的数据变换不同的形式加入到数据集中。比如一张图片,通过放大,缩小、旋转等数据增强,一同加入训练(加入训练的过程是自动的,不用额外处理,只需要处理怎么做数据增强就行)。参考: 数据增强 | TensorFlow Core

# 数据增强  
data_augmentation = keras.Sequential([  
    layers.RandomFlip("horizontal", input_shape=(image_height, image_width, 3)),    # 随机翻转  
    layers.RandomRotation(0.1),     # 随机旋转  
    layers.RandomZoom(0.1),         # 随机缩放  
])

应用数据增强,直接加到model的Sequential里面:

model = models.Sequential([  
    data_augmentation,  # 数据增强  
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_height, image_width, 3)),  
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(image_height, image_width, 3)),  
    layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样  
    layers.Conv2D(32, (3, 3), activation='relu'),   # 卷积层2,卷积核3*3  
    layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样  
    layers.Conv2D(64, (3, 3), activation='relu'),    # 卷积层3,卷积核3*3  
    layers.Dropout(0.3),    # 让神经元以一定的概率停止工作,防止过拟合,提高模型的泛化能力。  
  
    layers.Flatten(),   # Flatten层,连接卷积层与全连接层  
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取  
    layers.Dense(num_classes)    # 输出层,输出预期结果  
])

再次训练:
image.png
从结果来看,不是太理想,似乎也没有解决过拟合的问题,本次主要学习方式方法,后面慢慢学习研究。

10.保存模型

# 保存模型  
model.save('models/weatherModel.pth')

image.png

11.加载保存的模型,并进行图片预测

准备预测的图片如下(晴天):
image.png

新建立一个python文件,代码如下:

import tensorflow as tf  
import numpy as np  
  
image_height = 180  
image_width = 180  
  
class_names = ['cloudy', 'rain', 'shine', 'sunrise']  
# 加载天气识别模型  
model = tf.keras.models.load_model('models/weatherModel.pth')  
# 预测一下真实照片  
image_path = 'data/laker.jpg'  
image = tf.keras.utils.load_img(image_path, target_size=(image_height, image_width))  
image_array = tf.keras.utils.img_to_array(image)  # 将PIL对象转换成numpy数组  
# print(image_array.shape)  
# 在image_array的第0位置增加一个维度即batch。(batch, height, width, channel)  
image_array = tf.expand_dims(image_array, 0)  
  
pre = model.predict(image_array)  
# print(pre)  
score = tf.nn.softmax(pre[0])  
print(  
    "当前图片预测有{:.2f}%概率为{}天气 ".format(100 * np.max(score), class_names[np.argmax(score)])  
)

结果:
image.png
预测是晴天,结果是正确的。
(三)总结
1.如何检测GPU并使用GPU进行大模型训练与预测
2.与之前不一样的数据集的加载与处理方式
3.不同的损失函数,池化层函数,学习率和准确率之间有什么关系?需要继续了解
4.怎么解决过拟合的问题呢,后续学习研究。
5.学习数据增加的方式方法
6.每次模型训练完,进行真实图片的预测,应该模型能够保存后直接调用才对,不可能每次使用都需要重新训练一遍。学习模型的保存与加载使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值