第P1周:Pytorch实现mnist手写数字识别

目标

1. 实现pytorch环境配置
2. 实现mnist手写数字识别
3. 自己写几个数字识别试试

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架:

(二)具体步骤
**1.**配置Pytorch环境

打开官网PyTorch,Get started:
image.png
接下来是选择安装版本,最难的就是确定Compute Platform的版本,是否要使用GPU。所以先要确定CUDA的版本。
image.png
会发现,pytorch官网根本没有对应12.7的版本,先安装最新的试试呗,选择12.4:
image.png
安装命令:pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
image.png
image.png
安装完成,我们建立python文件,输入如下代码:

import torch  
x = torch.rand(5, 3)  
print(x)  
  
print(torch.cuda.is_available())

---------output---------------
tensor([[0.3952, 0.6351, 0.3107],
        [0.8780, 0.6469, 0.6714],
        [0.4380, 0.0236, 0.5976],
        [0.4132, 0.9663, 0.7576],
        [0.4047, 0.4636, 0.2858]])
True

从输出来看,成功了。下面开始正式的mnist手写数字识别

2. 下载数据并加载数据
import torch  
import torch.nn as nn  
# import matplotlib.pyplot as plt  
import torchvision  
  
# 第一步:设置硬件设备,有GPU就使用GPU,没有就使用GPU  
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  
print(device)  
  
# 第二步:导入数据  
# MNIST数据在torchvision.datasets中,自带的,可以通过代码在线下载数据。  
train_ds = torchvision.datasets.MNIST(root='./data',    # 下载的数据所存储的本地目录  
                                      train=True,       # True为训练集,False为测试集  
                                      transform=torchvision.transforms.ToTensor(),  # 将下载的数据直接转换成张量格式  
                                      download=True     # True直接在线下载,且下载到root指定的目录中,注意已经下载了,第二次以后就不会再下载了  
                                      )  
test_ds = torchvision.datasets.MNIST(root='./data',  
         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值