- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
目标
1. 实现pytorch环境配置
2. 实现mnist手写数字识别
3. 自己写几个数字识别试试
具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
框 架:
(二)具体步骤
**1.**配置Pytorch环境
打开官网PyTorch,Get started:
接下来是选择安装版本,最难的就是确定Compute Platform的版本,是否要使用GPU。所以先要确定CUDA的版本。
会发现,pytorch官网根本没有对应12.7的版本,先安装最新的试试呗,选择12.4:
安装命令:pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
安装完成,我们建立python文件,输入如下代码:
import torch
x = torch.rand(5, 3)
print(x)
print(torch.cuda.is_available())
---------output---------------
tensor([[0.3952, 0.6351, 0.3107],
[0.8780, 0.6469, 0.6714],
[0.4380, 0.0236, 0.5976],
[0.4132, 0.9663, 0.7576],
[0.4047, 0.4636, 0.2858]])
True
从输出来看,成功了。下面开始正式的mnist手写数字识别
2. 下载数据并加载数据
import torch
import torch.nn as nn
# import matplotlib.pyplot as plt
import torchvision
# 第一步:设置硬件设备,有GPU就使用GPU,没有就使用GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
# 第二步:导入数据
# MNIST数据在torchvision.datasets中,自带的,可以通过代码在线下载数据。
train_ds = torchvision.datasets.MNIST(root='./data', # 下载的数据所存储的本地目录
train=True, # True为训练集,False为测试集
transform=torchvision.transforms.ToTensor(), # 将下载的数据直接转换成张量格式
download=True # True直接在线下载,且下载到root指定的目录中,注意已经下载了,第二次以后就不会再下载了
)
test_ds = torchvision.datasets.MNIST(root='./data',