R语言ggplot绘制直方图+限制立方样条+双坐标轴图

本期介绍一下,怎么使用ggplot绘制直方图+限制立方样条+双坐标轴图,如下
在这里插入图片描述
这篇文章的起因是看到某收费软件画的一个直方图+限制立方样条的叠加图,觉得蛮好看的,就是下图这个样子。
在这里插入图片描述
于是我查了一下相关文章,目前的画法主要都是通过plot函数来画,不仅作图不够美观,而且画得十分复杂,对新手不够友好,而且很难画出下面这种双叠加的图形。
在这里插入图片描述
于是产生了自己通过ggplot来画图的想法,难点在于直方图和RCS的数据量级不一样,放在同一张图需要通过等比例进行映射,然后通过双坐标表示。我们继续通过我们的年龄与吸烟数据来演示(公众号回复:吸烟数据3,可以获得数据),我们先导入R包和数据

library(rms) #RCS
library(survminer)#曲线
library(ggplot2)#画图
library(survival)
library("scales")
dt<-read.csv("E:/r/test/smoke3.csv",sep=',',header=TRUE)

在这里插入图片描述
我们来看下数据,ID:编号,time时间变量,status;结局变量,是否吸烟,age年龄,gender:性别,
和既往一样需要对数据进行整理

本人为转载文章,全文地址如下:https://mp.weixin.qq.com/s?__biz=MzI1NjM3NTE1NQ==&mid=2247486422&idx=1&sn=3c12dedd499c6cd243a815570b40af69&chksm=ea26ebcadd5162dc845856b98e78f416fe46ae93e425dfbd9acbbf4601ade94951cde620ec06#rd

限制立方样条(Restricted Cubic Splines)在R语言的coxph函数中用于处理连续型解释变量。Cox比例风险模型是用于生存分析的一种常见方法,而限制立方样条可以用于建立和解释Cox模型中的非线性效应。 在R语言中使用coxph函数进行Cox比例风险模型的建模和拟合时,我们可以通过添限制立方样条来引入非线性效应。限制立方样条通过将连续型解释变量划分为多个区间,并在每个区间内拟合一个三次多项式函数,来近似解释变量与风险比例的关系。 为了使用限制立方样条,在coxph函数中,我们可以使用bs函数来指定解释变量为限制立方样条。通过bs函数的degree参数可以指定多项式函数的次数,默认为三次多项式。而使用ns函数可以通过自动选择节点的方法来构建样条函数。 在建模过程中,我们还可以通过使用coefplot等函数来绘制限制立方样条的效果图,以便更好地解释非线性效应。此外,我们还可以使用summary函数来获取关于限制立方样条的统计结果,如系数的估计值、标准误、显著性等。 总之,R语言中的coxph函数可以与限制立方样条结合使用,以处理连续型解释变量的非线性效应。通过合适地选择限制立方样条的参数和使用相关的可视化工具,我们可以更好地理解和解释非线性效应对生存分析结果的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值