重磅更新!Scitable包发布charls数据虚弱和虚弱指数提取功能,效率提升看得见!

CHARLS 是一项具备中国大陆 45 岁及以上人群代表性的追踪调查,旨在建设一个高质量的公共微观数据库,采集的信息涵盖社会经济状况和健康状况等多维度的信息,以满足老龄科学研究的需要。

为利用国际上最佳的数据采集方式,并确保研究结果的国际可比性CHARLS 参照包括美国的健康与退休研究(HRS)在内的系列国际老龄调查研究开展调查设计。其全国基线调查于 2011-12 年进行,于 2013 年、2015 年、2018 年和 2020 年分别开展了 4 轮常规问卷的追踪调查,并于 2014 年完成了中国中老年人生命历程调查。为确保样本的代表性,CHARLS 基线调查覆盖了全国 150 个国家/地区、450 个村庄/城市社区,涉及 10,257户家庭的 17,708 人,反映了中国中老年人群的总体情况。2019 年底到 2020 年初,新冠疫情在中国爆发,为及时记录新冠疫情对中国中老年人生活和健康的影响,在 2020 年的第 5 轮调查中增加采集了疫情相关的信息。

在这里插入图片描述
Charls数据目前能提取到虚弱和虚弱指数这两个变量,这是两个重要的变量,这两个变量是不一样的:

虚弱目前文章定义是个2分类变量:

在这里插入图片描述
在这里插入图片描述
在上图文章中,可以看到这篇文章虚弱有5个指标定义,是个2分类变量,在本篇文章中虚弱是个结局变量,也有部分文章把它用作观察变量,查看和死亡或者其他结局的关联。

虚弱指数是个连续指标,这个就厉害了,由40个变量组成,charls上大约能提取28个左右,在文章《Association of Cystatin C Kidney Function Measures With Long-term Deficit-Accumulation Frailty Trajectories and Physical Function Decline》中定义了29个指标组成的虚弱指数

在这里插入图片描述
但是也是相当复杂的,29个变量中,有些变量计算非常复杂,比如说认知功能,而且每一波的有些指标会变化,等于每个年份都要校对一遍,这个工作量想想都大,我也是校对变量校对到想吐了。

在2011年中没有身体变化的这个选项,我参考了文章《Association between Solid Cooking Fuel Use and Frailty Trajectories: Findings from a Nationwide Cohort in China》的方法,提取了28个变量

在这里插入图片描述

虚弱指数由啥用,可以用来做潜轨迹分析,比如说上面这篇文章就拿来做了潜轨迹分析,还有很多文章也是用来做轨迹分析

在这里插入图片描述
虚弱和虚弱指数自己手动算还是比较麻烦的,特别是虚弱指数,光找变量就有得你找的,但是用我写的函数可以很轻易做出来,下面我来演示一下,以2011年基线表为例子

导入2011年数据

setwd("E:/公众号文章2024年/charls数据库/class2") #设置你放数据文件的地址

library(haven)
library(tidyverse)

household_roster<-read_dta('household_roster.dta')  #家庭户
family<-read_dta('family_information.dta')   #大家庭
#############3
demographic<-read_dta('demographic_background.dta')  #基线表
health_status_and_functioning<-read_dta('health_status_and_functioning.dta')  #健康状况和功能
biomarkers<-read_dta('biomarkers.dta')  #体检数据
Blood_20140429<-read_dta('Blood_20140429.dta')  #血检数据
weight<-read_dta('weight.dta')  #权重
health_care_and_insurance<-read_dta('health_care_and_insurance.dta')  #医疗保健
###########
data<-demographic  %>% left_join(health_care_and_insurance, by='ID') %>%  
  left_join(health_status_and_functioning,by='ID') %>%  
  left_join(biomarkers,by='ID') %>% left_join(Blood_20140429,by='ID') %>% left_join(weight,by='ID')

提取虚弱的是charlsfrailty函数

charlsfrailty(data)

在这里插入图片描述
这样结果就出来了,非常容易,接下来咱们算一下2011年基线患者的虚弱指数,使用charlsfrailtyindex函数来分析,这里除了要定义数据,还要定义一下年份,2011年咱们就是"data2011"

charlsfrailtyindex(data=data,datatype = "data2011")

在这里插入图片描述

OK,虚弱指数也算出来了,后期咱们会通过这个虚弱指数来进行轨迹分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值