代码+视频,轻松复现CHARLS文章中的表3

CHARLS 是一项具备中国大陆 45 岁及以上人群代表性的追踪调查,旨在建设一个高质量的公共微观数据库,采集的信息涵盖社会经济状况和健康状况等多维度的信息,以满足老龄科学研究的需要。

为利用国际上最佳的数据采集方式,并确保研究结果的国际可比性CHARLS 参照包括美国的健康与退休研究(HRS)在内的系列国际老龄调查研究开展调查设计。其全国基线调查于 2011-12 年进行,于 2013 年、2015 年、2018 年和 2020 年分别开展了 4 轮常规问卷的追踪调查,并于 2014 年完成了中国中老年人生命历程调查。为确保样本的代表性,CHARLS 基线调查覆盖了全国 150 个国家/地区、450 个村庄/城市社区,涉及 10,257户家庭的 17,708 人,反映了中国中老年人群的总体情况。2019 年底到 2020 年初,新冠疫情在中国爆发,为及时记录新冠疫情对中国中老年人生活和健康的影响,在 2020 年的第 5 轮调查中增加采集了疫情相关的信息。

在这里插入图片描述
视频介绍一下如何使用我写的函数轻松复现CHARLS文章中的表三,比较适合没有统计基础的初学者,根本不用费劲学什么T检验,卡方检验,回归等。

轻松复现CHARLS文章中的表3

setwd("E:/公众号文章2024年/charls数据库/class4") #设置你放数据文件的地址

library(haven)
library(tidyverse)
library(scitb)
library(survival)
bc<-read.csv("data.final.csv",sep=',',header=TRUE)
dput(names(bc))

#分类变量转成因子
bc$sex<-as.factor(bc$sex)
bc$edu<-as.factor(bc$edu)
bc$smoking<-as.factor(bc$smoking)
bc$married<-as.factor(bc$married)

##导入函数
source("E:/r/test/scitb3a.R")

cov2<-c("age","sex")
cov3<-c("age","sex","edu","married","drink","smoking","Hypertension","wc","bmi","CVD")

out<-scitb3a(data=bc,x="TYG",y="New.diabetes",cov2 = cov2,cov3=cov3,family = "cox",time = "time" )

charls是一种用于数据清洗的编程代码,通常用于处理数据集中的异常值、缺失值以及数据格式问题,以确保数据的质量和一致性。在编写charls数据清洗代码时,你可能会使用一些特定的编程逻辑和工具函数来完成以下任务: 1. 缺失值处理:可以识别数据集中的缺失值,并决定是删除这些行、用均值、中位数或众数等统计量替换,还是用特定的标记示。 2. 异常值检测:通过统计测试或者箱线图等方法检测异常值,并根据业务规则决定是删除、修正还是保留这些值。 3. 格式标准化:将数据格式统一,比如日期格式转换、文本大小写转换、数值的四舍五入等。 4. 数据类型转换:确保数据集中字段的数据类型正确,比如将字符串类型转换为日期类型,或者将整数类型转换为浮点类型。 在实际的数据清洗过程中,具体的代码实现会依赖于你使用的编程语言和处理数据的库。例如,在Python中,你可能会使用pandas库来处理数据集: ```python import pandas as pd # 加载数据集 data = pd.read_csv(&#39;dataset.csv&#39;) # 处理缺失值,例如用列的均值填充 data.fillna(data.mean(), inplace=True) # 检测并删除异常值,这里仅为示例,实际情况需要依据业务逻辑 # 假设我们的数据是正态分布的,可以使用标准差来定义异常值 z_scores = (data - data.mean()) / data.std() abs_z_scores = abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) data = data[filtered_entries] # 数据格式标准化 data[&#39;date&#39;] = pd.to_datetime(data[&#39;date&#39;], errors=&#39;coerce&#39;) # 数据类型转换 data[&#39;number&#39;] = data[&#39;number&#39;].astype(float) # 保存清洗后的数据 data.to_csv(&#39;clean_dataset.csv&#39;, index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值