charls数据库中虚弱变量(Frailty)的提取

CHARLS 是一项具备中国大陆 45 岁及以上人群代表性的追踪调查,旨在建设一个高质量的公共微观数据库,采集的信息涵盖社会经济状况和健康状况等多维度的信息,以满足老龄科学研究的需要。
为利用国际上最佳的数据采集方式,并确保研究结果的国际可比性CHARLS 参照包括美国的健康与退休研究(HRS)在内的系列国际老龄调查研究开展调查设计。其全国基线调查于 2011-12 年进行,于 2013 年、2015 年、2018 年和 2020 年分别开展了 4 轮常规问卷的追踪调查,并于 2014 年完成了中国中老年人生命历程调查。为确保样本的代表性,CHARLS 基线调查覆盖了全国 150 个国家/地区、450 个村庄/城市社区,涉及 10,257户家庭的 17,708 人,反映了中国中老年人群的总体情况。2019 年底到 2020 年初,新冠疫情在中国爆发,为及时记录新冠疫情对中国中老年人生活和健康的影响,在 2020 年的第 5 轮调查中增加采集了疫情相关的信息。

在这里插入图片描述
在文章《Development and validation of a risk prediction model for frailty in patients with diabetes》作者定义了一个虚弱的变量

在这里插入图片描述
文章指出:糖尿病可以导致虚弱

在这里插入图片描述

作者指出,虚弱Frailty由5个指标定义,

在这里插入图片描述

5个指标中存在3个或者3个以上就可以诊断虚弱,我们这里通过使用2013年的数据演示把这个指标提取出来。
先把相关数据导入

setwd("E:/公众号文章2024年/charls数据库/class2") #设置你放数据文件的地址
library(haven)
library(tidyverse)
Health_Status_and_Functioning2013<-read_dta('2013/Health_Status_and_Functioning.dta')
Demographic_Background <- read_dta('2013/Demographic_Background.dta')
biomarker<- read_dta('2013/Biomarker.dta')
Health_Care_and_Insurance <- read_dta('2013/Health_Care_and_Insurance.dta')

在这里插入图片描述
导入后把数据进行合并

data<- left_join(Health_Status_and_Functioning2013, Health_Care_and_Insurance, by='ID')%>%
  left_join(biomarker, by='ID')%>%left_join(Health_Care_and_Insurance, by='ID')

咱们先对第一个项目:使用自我报告的项目“难以举起或搬运超过 5 公斤的重量”来衡量虚弱的变量进行提取
这个变量来自:db008和db009,我们可以看到除了1以外都是有困难的

在这里插入图片描述

data$Weak1<-ifelse(data$db008==1,0,1)
data$Weak2<-ifelse(data$db009==1,0,1)
data$Weak<-ifelse(data$Weak1==1 | data$Weak2==1,1,0)

然后依次把其他4个指标提取

在这里插入图片描述
最后把评分大于等于3的默认为1就行了

在这里插入图片描述
原创不易,需要全套代码的粉丝,把公众号的本篇文章转发朋友圈,集10个赞后,截图发给我,嫌麻烦的话直接给我打赏5元,截图发给我也可以。

### 数据清洗概述 数据清洗是数据分析过程中至关重要的一步,旨在提高数据质量并确保后续分析的有效性和准确性。对于CHARLS数据库中的老年人群数据,可以采用多种方法来清理和准备这些数据。 #### 导入必要的库 为了有效地处理CHARLS数据库中的数据,首先需要导入一些常用的Python库: ```python import pandas as pd import numpy as np from sklearn.impute import SimpleImputer ``` #### 加载数据集 假设已经下载了CHARLS数据库的相关文件,并将其保存为CSV格式,则可以通过如下方式加载数据[^1]: ```python data = pd.read_csv('path_to_charls_data.csv') ``` #### 处理缺失值 在实际应用中,CHARLS数据库可能存在大量缺失值的情况。针对这种情况,可以选择删除含有过多缺失值的记录或列,也可以通过插补法填补缺失值。这里展示一种简单的均值填充策略: ```python imputer = SimpleImputer(strategy='mean') # 使用平均数填充数值型特征 cleaned_numeric_data = imputer.fit_transform(data.select_dtypes(include=[np.number])) # 对于分类变量,可以用众数填充 mode_imputer = SimpleImputer(strategy="most_frequent") cleaned_categorical_data = mode_imputer.fit_transform(data.select_dtypes(exclude=[np.number])) ``` #### 去除重复项 有时,在同一个调查对象的不同访问时间点可能会存在完全相同的记录。因此,去除冗余条目也是必不可少的操作之一: ```python unique_data = data.drop_duplicates() ``` #### 统一日期格式 如果涉及到出生年份或其他时间戳字段,应该统一其表示形式以便更好地计算年龄等指标: ```python data['birth_year'] = pd.to_datetime(data['birth_date']).dt.year current_year = datetime.now().year data['age'] = current_year - data['birth_year'] ``` #### 过滤特定年龄段人群 最后,可以根据研究需求筛选出符合条件的老年群体样本集合: ```python elderly_population = data[data['age'] >= 60] ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值