在SCI文章中,交互效应表格(通常是表五)能为文章锦上添花,增加文章的信服力,增加结果的可信程度,还能进行数据挖掘。什么是亚组,通常就是特殊类型人群,比如男女,种族等,就是说你的数据放入特殊人群中结果还可靠吗?如果在各个特殊人群中,你的结果很稳定,说明你的结论很可靠。如果亚组的结论和你的数据数据结论相反,你可以拿来做个新论题。还可以比较不同亚组之间有无区别,比如做了心脏支架和没做支架的区别,可以发现很多新思路,易于数据挖掘。
本次以视频和代码呈现:
scitable包轻松复现sci论文中的多模型亚组分析
library(scitable)
library(survival)
setwd("E:/r/yanshi")
bc<-read.csv("zaochan.csv",sep=',',header=TRUE)
bc <- na.omit(bc)
str(bc)
dput(names(bc))
allVars <-c("age", "lwt", "smoke", "ptl", "ht", "ui", "ftv", "bwt","low" ) #所有变量
fvars<-c("smoke","ht","ui") #所有变量中的分类变量
x<-"age" #你研究的变量
y<-"low" #你的结局变量
cov3<-c( "smoke", "ptl", "ht", "ui", "ftv") #你的协变量,不包含X和y
family<-"glm" #你的研究类型
username = "test"
token = "476f2b199d886d92"
#############
out<-organizedata(data = bc,allVars = allVars,x=x,y=y,fvars=fvars,cov3=cov3,family=family,
username=username,token=token)
data<-out[["data"]]
fit<-out[["fit"]]
fit[["formula"]] #查看模型
cov3<-out[["cov"]]
fvars<-out[["factorvarout"]]
#######
cov2<-"smoke"
cov3<-cov3
Interaction<-c("ui","ht","smoke") #注意分层变量不能连续变量,x和y不能再分层变量里面
tb3.b<-scitb3b(data=data,x=x,y=y,Interaction=Interaction,cov2 = cov2,cov3=cov3,family=family,username=username,token=token)
####COX回归模型
library(foreign)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
str(bc)
##########
allVars <-c("age", "pathsize", "er", "histgrad","pr", "pathscat","ln_yesno","status","time") #所有变量,包含x和y
fvars<-c("er","histgrad","pr","pathscat","ln_yesno","status") #所有变量中的分类变量
x<-"age" #你研究的变量
y<-"status" #
cov3<-c("age", "pathsize", "er", "histgrad","pr", "pathscat") #你的协变量,不包含X和y
family<-"cox" #你的研究类型
time<-"time"
########
###整理数据
out<-organizedata(data = bc,allVars = allVars,x=x,y=y,fvars=fvars,cov3=cov3,time=time,family=family,
username=username,token=token)
data<-out[["data"]]
fit<-out[["fit"]]
fit[["formula"]] #查看模型
cov3<-out[["cov"]]
fvars<-out[["factorvarout"]]
####
cov2<-c("ln_yesno","pathsize")
cov3<-cov3
Interaction<-c("er","histgrad","pr","ln_yesno")
###无调整模型
tb5.a1<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = NULL,family=family,time = time,
username=username,token=token)
###微调整模型
tb5.a2<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = cov2,family=family,time = time,
username=username,token=token)
###全调整模型
tb5.a3<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = cov3,family=family,time = time,
username=username,token=token)
需要获取scitable包可以看下面这篇文章