scitable包轻松复现SCI论文中的多模型亚组表格

在SCI文章中,交互效应表格(通常是表五)能为文章锦上添花,增加文章的信服力,增加结果的可信程度,还能进行数据挖掘。什么是亚组,通常就是特殊类型人群,比如男女,种族等,就是说你的数据放入特殊人群中结果还可靠吗?如果在各个特殊人群中,你的结果很稳定,说明你的结论很可靠。如果亚组的结论和你的数据数据结论相反,你可以拿来做个新论题。还可以比较不同亚组之间有无区别,比如做了心脏支架和没做支架的区别,可以发现很多新思路,易于数据挖掘。

在这里插入图片描述

本次以视频和代码呈现:

scitable包轻松复现sci论文中的多模型亚组分析

library(scitable)
library(survival)
setwd("E:/r/yanshi")
bc<-read.csv("zaochan.csv",sep=',',header=TRUE)
bc <- na.omit(bc)
str(bc)
dput(names(bc))

allVars <-c("age", "lwt", "smoke", "ptl", "ht", "ui", "ftv", "bwt","low" )  #所有变量
fvars<-c("smoke","ht","ui")   #所有变量中的分类变量
x<-"age"    #你研究的变量
y<-"low"    #你的结局变量
cov3<-c( "smoke", "ptl", "ht", "ui", "ftv") #你的协变量,不包含X和y
family<-"glm"   #你的研究类型
username = "test"
token = "476f2b199d886d92"

#############
out<-organizedata(data = bc,allVars = allVars,x=x,y=y,fvars=fvars,cov3=cov3,family=family,
                  username=username,token=token)
data<-out[["data"]]
fit<-out[["fit"]]
fit[["formula"]]  #查看模型
cov3<-out[["cov"]]
fvars<-out[["factorvarout"]]
#######
cov2<-"smoke"
cov3<-cov3
Interaction<-c("ui","ht","smoke")  #注意分层变量不能连续变量,x和y不能再分层变量里面
tb3.b<-scitb3b(data=data,x=x,y=y,Interaction=Interaction,cov2 = cov2,cov3=cov3,family=family,username=username,token=token)


####COX回归模型
library(foreign)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
str(bc)
##########
allVars <-c("age", "pathsize", "er", "histgrad","pr",  "pathscat","ln_yesno","status","time")  #所有变量,包含x和y
fvars<-c("er","histgrad","pr","pathscat","ln_yesno","status")   #所有变量中的分类变量
x<-"age"    #你研究的变量
y<-"status"   #
cov3<-c("age", "pathsize", "er", "histgrad","pr",  "pathscat") #你的协变量,不包含X和y
family<-"cox"   #你的研究类型
time<-"time"
########
###整理数据
out<-organizedata(data = bc,allVars = allVars,x=x,y=y,fvars=fvars,cov3=cov3,time=time,family=family,
                  username=username,token=token)
data<-out[["data"]]
fit<-out[["fit"]]
fit[["formula"]]  #查看模型
cov3<-out[["cov"]]
fvars<-out[["factorvarout"]]
####
cov2<-c("ln_yesno","pathsize")
cov3<-cov3
Interaction<-c("er","histgrad","pr","ln_yesno")

###无调整模型
tb5.a1<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = NULL,family=family,time = time,
               username=username,token=token)

###微调整模型
tb5.a2<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = cov2,family=family,time = time,
               username=username,token=token)

###全调整模型
tb5.a3<-scitb5a(data=data,x=x,y=y,Interaction=Interaction,cov = cov3,family=family,time = time,
                username=username,token=token)

需要获取scitable包可以看下面这篇文章

本公众号原创,特别适合无统计基础的初学者:scitable包+配套视频正式发布啦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值