scitable包sciroc曲线发布,新手小白也能驾驭各种roc曲线绘制—内部验证/外部验证/重抽样roc等

scitable包是我自己编写的,集合众多函数的一个R包,目前升级到3.1版,升级了sciroc曲线发,这个函数是专门为了制作各种ROC曲线的而编写的,下面我来演示一下。
导入R包和数据, 我们使用人流后导致不孕的数据集(关注公众号后回复:不孕症,可以获得数据),我们先导入看一下

library(scitable)
bc<-read.csv("E:/r/test/buyunzheng.csv",sep=',',header=TRUE)

在这里插入图片描述
数据有8个指标,最后两个是PSM匹配结果,我们不用理他,其余六个为:
Education:教育程度,age:年龄,parity产次,induced:人流次数,case:是否不孕,这是结局指标,spontaneous:自然流产次数。
有一些变量是分类变量,我们需要把它转换一下

bc$education<-ifelse(bc$education=="0-5yrs",0,ifelse(bc$education=="6-11yrs",1,2))
bc$spontaneous<-as.factor(bc$spontaneous)
bc$case<-as.factor(bc$case)
bc$induced<-as.factor(bc$induced)
bc$education<-as.factor(bc$education)

简单做个数据拆分,把数据分成bc_train和bc_test

##数据拆分
tr1<- sample(nrow(bc),0.7*nrow(bc))##随机无放抽取
bc_train <- bc[tr1,]#70%数据集
bc_test<- bc[-tr1,]#30%数据集

我们现在拿bc_train建模,等下拿bc_test来验证

##建模
f1<- glm(case ~ age + education + parity + induced+spontaneous,
         family = binomial(link = logit), data = bc_train)

绘图

sciroc(f1)

在这里插入图片描述
怎么做验证集的roc呢,在参数newdata上进入验证集数据就可以了

##应用到其他数据

sciroc(f1,newdata = bc_test)

在这里插入图片描述

重抽样ROC,这个一般在本数据集就可以了,

sciroc(f1,boot = T)

在这里插入图片描述

这样各种ROC曲线就绘制完成了,新手小白也能驾驭各种roc曲线绘制,特别适合新手

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值