二体问题之3:航天器轨道方程

本文介绍了轨道方程的推导,涉及角动量L和拉普拉斯常量μ的应用,展示了特殊几何参数如近地点p和远地点a的关系,以及圆与椭圆的交点坐标计算。通过这些概念,文章深入探讨了与天体力学相关的积分常数在圆锥曲线上的几何意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:笔记,恳请批评指正。

1. 轨道方程

轨道方程可由积分常数拉普拉斯积分推导和定义:
L ⃗ = v ⃗ × h ⃗ − μ r r ⃗ \vec{L}=\vec{v} \times \vec{h}-\frac{\mu}{r} \vec{r} L =v ×h rμr
在右侧点乘 r \mathbf{r} r,已知二者都位于轨道面内,设夹角为 θ \theta θ
L ⃗ ⋅ r ⃗ = ( v ⃗ × h ⃗ ) r ⃗ − μ r r ⃗ ⋅ r ⃗ L r cos ⁡ θ = − ( h ⃗ × v ⃗ ) r ⃗ − μ r r 2 = − h ⃗ ⋅ ( v ⃗ × r ⃗ ) − μ r = h 2 − μ r \begin{aligned} \vec{L} \cdot \vec{r} &=(\vec{v} \times \vec{h}) \vec{r}-\frac{\mu}{r} \vec{r} \cdot \vec{r} \\ L r \cos \theta &=-(\vec{h} \times \vec{v}) \vec{r}-\frac{\mu}{r} r^{2} \\ &=-\vec{h} \cdot(\vec{v} \times \vec{r})-\mu r \\ &=h^{2}-\mu r \end{aligned} L r Lrcosθ=(v ×h )r rμr r =(h ×v )r rμr2=h (v ×r )μr=h2μr
整理可得矢径 r \mathbf{r} r的大小 r r r与真近点角 θ \theta θ的关系
r = h 2 μ + L cos ⁡ θ = h 2 μ 1 + L μ cos ⁡ θ r=\frac{h^{2}}{\mu+L \cos \theta}=\frac{\frac{h^{2}}{\mu}}{1+\frac{L}{\mu} \cos \theta} r=μ+Lcosθh2=1+μLcosθμh2
已知圆锥曲线方程为
r = p 1 + e cos ⁡ θ r=\frac{p}{1+e \cos \theta} r=1+ecosθp
在这里插入图片描述

则可定义极径 p = h 2 μ p=\frac{h^{2}}{\mu} p=μh2,偏心率 e = L μ e=\frac{L}{\mu} e=μL e 2 = ( L ⃗ μ ) 2 = μ 2 + 2 E h 2 μ 2 = 1 + 2 E h 2 μ 2 e^{2}=\left(\frac{\vec{L}}{\mu}\right)^{2}=\frac{\mu^{2}+2 E h^{2}}{\mu^{2}}=1+\frac{2 E h^{2}}{\mu^{2}} e2=(μL )2=μ2μ2+2Eh2=1+μ22Eh2。此时可以给定2个积分常数(角动量和拉普拉斯常量)的几何表示。

2. 特殊几何参数

近地点p和远地点a处速度和位置矢量垂直,二者方向和大小为:
{ θ = 0 , r p = P 1 + e , v p = h r p = μ p ( 1 + e ) θ = π , r a = p 1 − e , v a = h r a = μ p ( 1 − e ) \left\{\begin{array}{l} \theta=0, r_{p}=\frac{P}{1+e}, \quad v_{p}=\frac{h}{r_{p}}=\sqrt{\frac{\mu}{p}}(1+e) \\ \theta=\pi, r_{a}=\frac{p}{1-e}, \quad v_{a}=\frac{h}{r_{a}}=\sqrt{\frac{\mu}{p}}(1-e) \end{array}\right. θ=0,rp=1+eP,vp=rph=pμ (1+e)θ=π,ra=1ep,va=rah=pμ (1e)
其中,近地点p处 θ \theta θ为0,为拉普拉斯常量相同方向。

![[Pasted image 20211024134744.png]]

进一步可以推导出,a为半长轴,p为极径,其关系如下
a = r a + r p 2 = p 2 ( 1 − e + 1 + e 1 − e 2 ) = P 1 − e 2 a=\frac{r_{a}+r_{p}}{2}=\frac{p}{2}\left(\frac{1-e+1+e}{1-e^{2}}\right)=\frac{P}{1-e^{2}} a=2ra+rp=2p(1e21e+1+e)=1e2P

将特殊点的位置大小和速度大小带入积分常数的能量积分可以得到其几何表示。

3. 圆与椭圆

![[yeyc.excalidraw.png]]

当某一个圆半径与一个椭圆半长轴相等时,其相同x对应的y有如下关系
y e = b a y c y e=\frac{b}{a} y_{c} ye=abyc
将圆与椭圆的方程变形可得。
{ x 2 a 2 + y 2 2 a 2 = 1 , y c = a 2 − x 2 x 2 a 2 + y p 2 b 2 = 1 , y p = b a a 2 − x 2 \begin{cases}\frac{x^{2}}{a^{2}}+\frac{y_{2}^{2}}{a^{2}}=1, & y_{c}=\sqrt{a^{2}-x^{2}} \\ \frac{x^{2}}{a^{2}}+\frac{y_{p}^{2}}{b^{2}}=1, & y_{p}=\frac{b}{a} \sqrt{a^{2}-x^{2}}\end{cases} {a2x2+a2y22=1,a2x2+b2yp2=1,yc=a2x2 yp=aba2x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zeror_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值