2025 最佳免费商用文本转语音模型: Kokoro TTS

a26a48b164fbecb022b9384daccfa2fe.gif

向AI转型的程序员都关注公众号 机器学习AI算法工程

在文本转语音(TTS)技术领域,一项突破性的进展引起了广泛关注——Kokoro TTS 模型凭借其卓越性能和完全免费的商用许可,成为目前最出色的 TTS 解决方案之一。基于广受欢迎的开源框架 StyleTTS,Kokoro TTS 在灵活性和功能性上都表现出色,可广泛应用于多种场景。接下来,我们将深入探讨这个模型的独特之处、核心功能以及如何充分利用它。


什么是 TTS?

TTS(文本转语音)是一种将书面文字转换为语音的技术,广泛应用于以下场景:

  • 与语言模型(LLM)的交互;

  • 有声书配音;

  • 将书面内容转化为播客;

  • 提升无障碍体验。

TTS 技术在现实生活中拥有重要的应用价值,为用户带来更优质的使用体验。

为什么说 Kokoro TTS 是行业“颠覆者”?

d2bd38971719be40a2ad000d2ff4f629.png

Kokoro TTS 在免费、开源的商用 TTS 模型中脱颖而出,以下是它的主要优势:

1. 开源且许可友好

Kokoro TTS 使用 Apache 2.0 许可证,无限制支持商用场景,是真正意义上的开源解决方案。

2. Hugging Face 排名优势

Kokoro TTS 在 Hugging Face 的 TTS Arena 排名第三。虽然 Play.HT 和 ElevenLabs 等模型排名更高,但它们并不支持商用,因此 Kokoro TTS 显得更具竞争力。

免费体验地址: https://kokorottsai.com/


核心功能

  1. 多样化声音选项
    提供多种男性和女性语音包,满足不同场景需求。

  2. 多语言支持
    支持美式与英式英语、法语、日语、韩语和中文。

  3. ONNX 版本
    提供轻量级、无需依赖 GPU 的部署选项,非常适合实时应用场景。


对开发者的关键优势

e0f71e5d52d5fb77c403e94dc254de25.png

Kokoro TTS 为需要集成 TTS 功能的开发者提供了强大的工具。其 ONNX 兼容性带来了以下好处:

  • 无缝自托管
    可部署在个人服务器或云环境中。

  • 实时应用
    非常适合基于网页的实时通信系统。

  • 可扩展性
    在无需依赖高性能 GPU 的情况下,支持大规模生产场景。


如何开始使用 Kokoro TTS?

Kokoro TTS 的模型权重可直接下载,相关代码和部署文档也都在 Hugging Face 平台上免费提供。开发者只需几行代码即可快速上手,体验高质量的语音合成效果。

Model: https://huggingface.co/hexgrad/Kokoro-82M

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

5cb46f165ce6f24090bdb9d3906a1f50.jpeg

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

30e92ec529712c61fc4f0738a73a76d8.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值