TTS | 语音合成模型实验结果经验总结

本文详细比较了多种语音合成模型,包括Fastspeech、VITS、MB-iSTFT-VITS等,分析了它们的架构、训练速度、性能差异,并介绍了VITS与MB-iSTFT-VITS的区别。实验结果显示,VITS在数据较少情况下表现良好,而MB-iSTFT-VITS更轻量化。还探讨了模型微调策略以适应多人语音合成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ----------------------------------🗣️ 语音合成 相关系列直达 🗣️ -------------------------------------

🫧VITS :TTS | 保姆级端到端的语音合成VITS论文详解及项目实现(超详细图文代码)

🫧MB-iSTFT-VITS:TTS | 轻量级语音合成论文详解及项目实现

🫧MB-iSTFT-VITS2:TTS | 轻量级VITS2的项目实现以及API设置-CSDN博客

🫧PolyLangVITS:MTTS | 多语言多人的VITS语音合成项目实现-CSDN博客

🫧NaturalSpeech:TTS | NaturalSpeech语音合成论文详解及项目实现-CSDN博客

本文主要是语音合成模型实验结果经验总结!!

首先列出实验过的所有模型

  1. Fastspeech&Fastspeech2
  2. Tacotron&Tacotron2
  3. Transformer-TTS
  4. Bark(E2E)
  5. VITS/VITS2(E2E)
  6. NaturalSpeech2
  7. MB-iSTFT-VITS/ MB-iSTFT-VITS2(E2E)

1.语音合成主主要架构如下

2.模型间的比较

 # 比较基于同样的数据,参数等测试结果

Model

Fastspeech2(VocGAN)

VITS

MB-iSTFT-VITS

MB-iSTFT-VITS2

mini-MB-iSTFT-VITS2

NaturalSpeech

Feature

MFA

Train 2 models  

Data need big

MAS

Train 1 models

MAS

Multi-Band

MAS

Multi-Band

MAS

Multi-Band


upsample

MFA

Params

27.0M

28.11M

27.49M

×

×

×

Model

Size

checkpoint

330.37MB

G 456.22MB

D 535.11MB

D:535.10MB G:397.97MB

D:535.10MB G:420.90MB

D:535.09MB

G:109.78MB

D:535.09MB G:286.02MB

Train Speed

(4230
/64bs/5000epoch)

5day

4day

8day

8day

2weeks

×

Inference Speed

3.01sec

2.44sec

0.98sec

1.9sec

1.9sec

×

3.模型优缺点

Fatespeech系列是俩阶段模型,对数据要求较高,尤其在使用MFA工具进行对齐时,可能出现错误,且语音数据越多,相对来说学习的越好。

VITS系列典型的端到端模型,便于训练,且在数据集较少的情况下依旧可以生成较好的语音。

4.vits与MB-isftf-vits的区别

论文中有详细体现,主要是代码实现的区别

在训练(train)中增加

      "fft_sizes": [384, 683, 171],
      "hop_sizes": [30, 60, 10],
      "win_lengths": [150, 300, 60],
      "window": "hann_window"

在数据(data)中增加

      "use_mel_posterior_encoder": true,


在模型(model)中

      "use_mel_posterior_encoder": true,
      "use_transformer_flows": true,
      "transformer_flow_type": "pre_conv2",
      "use_spk_conditioned_encoder": false,
      "use_noise_scaled_mas": true,
      "use_duration_discriminator": true,
      "duration_discriminator_type": "dur_disc_2",
      "ms_istft_vits": false,
      "mb_istft_vits": true,
      "istft_vits": false,
      "subbands": 4,
      "gen_istft_n_fft": 16,
      "gen_istft_hop_size": 4,

vits中hidden_channels是192,而mb-istft-vits是96,因为mb-istft-vits是居于istft-vits构建的。

主要区别如下

    if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:  # P.incoder for vits2
        print("Using mel posterior encoder for VITS2")
        posterior_channels = 80  # vits2
        hps.data.use_mel_posterior_encoder = True
    else:
        print("Using lin posterior encoder for VITS1")
        posterior_channels = hps.data.filter_length // 2 + 1
        hps.data.use_mel_posterior_encoder = False

5.模型权重微调

在单人模型中训练三天后,(6000数据+A100)得到比较好的结果,使用最优权重在多人数据集且每个人语音数据为300左右上进行微调,结果表明虽基于不用的数据集进行训练,训练后生成的语音依旧比较像一开始的单人模型的音色。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值