傅里叶变换推导

本文修正了辅助角公式中求幅值的计算方法,并指出了欧拉公式中sin函数表达式的误差。提供了正确的数学公式及其应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/linmingan/article/details/51194187

注:文章中有一两处公式错误,(1)辅助角公式中求幅值应该是平方开根号,(2)sin()函数的欧拉表示公式中,应该是除以2i。









本文参考的博客

[1]:http://www.360doc.com/content/13/0328/12/202378_274443797.shtml

[2]:http://wenku.baidu.com/link?url=1ZjHbkLu-d2fJxKzT2Fwvt3HxAJJKAV1OkWeBcdFhL56GMhEeHmRsxPI8Kb8Dz_hsz3cvtIboytbVoVAlxc9XtewI0QurpLxAh0SvQEbGau

[3]:http://blog.csdn.net/newthinker_wei/article/details/8698214

[4]:http://zhuanlan.zhihu.com/p/19763358?columnSlug=wille

[5]:维基百科中的动态图 https://en.wikipedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif

### Chirp信号的傅里叶变换推导 #### 定义Chirp信号 Chirp信号是一种频率随时间变化的信号。其一般形式可以表示为: \[ s(t) = A \cdot e^{j(2\pi f_0 t + \frac{\mu}{2}t^2)} \] 这里 \(A\) 是幅度,\(f_0\) 表示初始频率,而 \(\mu\) 则代表频率斜率。 #### 傅里叶变换公式应用 为了求解上述 chirp 信号的傅里叶变换,采用标准的连续时间傅里叶变换定义: \[ S(f)=\int_{-\infty }^{+\infty}s(t)e^{-j2\pi ft}\,dt \] 将 chirp 信号表达式代入此方程得到具体的积分表达式[^1]: ```matlab syms t f mu f0 A real; S_f = int(A * exp(j*(2*pi*f0*t + (mu/2)*t^2)) * exp(-j*2*pi*f*t), t, -inf, inf); ``` #### 积分计算 该积分可以通过完成平方的方式简化并解析求解。具体来说,指数项中的二次多项式部分可重写为完全平方形式以便于利用高斯积分的结果来解决这个问题。最终结果会涉及到误差函数 erf 或者互补误差函数 erfc 的形式。 对于线性调频情况 (\(\mu=const.\)), 变换后的频谱具有特定结构,能够更好地聚焦于某些感兴趣的区域内的细节信息[^3]。 #### 结果解释 经过适当转换后,可以获得 chirp 信号在频域上的分布特性。这种变换不仅揭示了信号在整个频带范围内的能量分布状况,而且还能显示出瞬时频率的变化趋势。这对于分析非平稳信号特别有用,因为传统傅里叶变换无法提供局部化的时间-频率关系描述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值