【线性代数】正交矩阵和格兰姆-施密特正交化

本文介绍了正交矩阵的概念,包括正交矩阵的性质和它们与单位矩阵的关系。通过具体的例子展示了如何通过格兰姆-施密特正交化过程将一个矩阵转换为正交矩阵,详细解释了二维和三维空间中的正交化步骤,并提供了实际计算示例。
摘要由CSDN通过智能技术生成

引言

一组线性无关的向量可以张成一个向量子空间,比如向量\(\overrightarrow{e_1} = \left[ \begin{matrix} 1 \\ 2 \end{matrix} \right]\)\(\overrightarrow{e_2} = \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right]\)。它们线性无关,并且能张成一个二维平面。既然如此,那么为什么我们众所周知的二维坐标系是用\(\overrightarrow{i} = \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right]\)\(\overrightarrow{j} = \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right]\)表示,明明任意一组线性无关的2维向量都可以表示二维平面。这就引入了今天这篇笔记要讲的正交矩阵,得益于正交矩阵的性质,很多运算都可以被化简。

正交矩阵

之前的笔记中已经提到过正交向量,比如在\(R^n\)空间中两个n维向量\(\overrightarrow{e_1}、\overrightarrow{e_2}\)垂直,称这两个向量正交。而且显然,互为正交的一组向量(除去非零向量)必然线性无关,为此如果将一组n维正交向量放在一个矩阵中,比如\[A= \begin{equation} \left[ \begin{matrix} e1 \ e2 \end{matrix} \right] \end{equation} \]
那么很显然,对于矩阵A,它有如下性质:\[ \begin{equation} A^TA=\left[ \begin{matrix} e1 \\ e2 \end{matrix} \right]\left[ \begin{matrix} e1 \ e2 \end{matrix} \right]=D \end{equation} \]
矩阵\(D\)是一个对角矩阵,主对角线上的值分别对应着矩阵\(A\)中每一个列向量的模。那如果我们对矩阵A的要求更加严格一点,

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值