线性代数基础知识
2021年6月21号星期一,今天早上我做线性代数的练习做的很生气,为什么?因为它昨天还在说齐次线性方程组,今天就猛地一下换到了二次型还是啥玩意,六道题,几乎每道都看不太懂,本来想总结一下多元微分方程的内容,不得已,现在来梳理一下线代二次型的内容吧
正交矩阵
-
$ A^T A=AA^T=E $
-
$ A{-1}=A{T} $
-
$ |A|=\pm 1 $
-
A的行(列)向量都是单位向量且两两正交
实对称矩阵
- 可相似对角化
- 属于不同 λ \lambda λ对应的 α \alpha α相互正交
- Q − 1 Q^{-1} Q−1 AQ= Q T Q^T QT AQ= Λ \Lambda Λ,Q为正交阵
正交化
施密特正交化
向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性无关
标准正交化:
β 1 = α 1 \beta_1=\alpha_1 β1=α1
β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2−(β1,β1)(α2,β1)β1
β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β3=α3−(β1,β1)(α3,β1)β1−(β2,β2)(α3,β2)β2
β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3是正交向量组
单位化
η 1 = β 1 ∣ β 1 ∣ \eta_1=\frac{\beta_1}{|\beta_1|} η1=∣β1∣β1
以此类推, η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3是标准正交向量组
对角化操作步骤
- 求特征值和特征向量
- 线性无关向量的个数 ⟶ \longrightarrow ⟶是否可对角化
- 特征向量按列排列,得到U,则有 U T U^T UTAU~ Λ \Lambda Λ
- 矩阵A通过U转换到另一个坐标系,成为A~ Λ \Lambda Λ,主对角线全为特征值
正交单位化步骤
- 通过特征方程求特征值
- 对每个重特征根求解齐次线性方程组
- 施密特正交化(只有重根出来的特征向量才需要正交化,不是重根的禁止正交化)
- 单位化,即可实现 Q − 1 Q^{-1} Q−1AQ= Q T Q^T QTAQ= Λ \Lambda Λ
对角化和正交单位化的区别:没有区别,都可以实现 U − 1 U^{-1} U−1AU= Λ \Lambda Λ和 Q − 1 Q^{-1} Q−1AQ= Q T Q^T QTAQ= Λ \Lambda Λ,结果根据matlab计算相同
实对称矩阵特殊的地方在于,它的不同特征值对应的特征向量天生就是正交的,例如一个重根特征值所对应的特征向量可能大于一个,那么特征值对应的特征向量就是 k 1 α 1 + k 2 α 2 k_1\alpha_1+k_2\alpha_2 k1α1+k2α2,它跟 k 3 α 3 k_3\alpha_3 k3α3正交
它也特殊在Q是一个特殊的U,Q的每个列向量都互相正交,且长度为1,那么Q就是标准正交基组成的正交矩阵,当我们想要许多U里的一个Q的时候(因为正交矩阵很好?),我们才会去正交单位化
二次型表达式
长这样: x 1 2 + x 1 x 2 + x 1 x 3 + x 2 2 x_1^2+x_1 x_2+x_1 x_3+x_2^2 x12+x1x2+x1x3+x22不多想,这就是二次型表达式
正交变换下的标准型
标准型即平方和
表达式里就只有 y 1 2 + y 2 2 y_1^2+y_2^2 y12+y22这样的东西
规范型矩阵
规范型指标准型的表达式中,系数只有1,-1,0
正定
一般的说法是
二次型 x T A x x^T Ax xTAx正定 ⟺ \iff ⟺
- 存在向量x不为零,恒有 x T A x x^T Ax xTAx>0
- A的特征值全大于0
- 正惯性指数p=n
- A与E合同,即有可逆矩阵C使A= C T C C^T C CTC
- A的顺序主子式全大于0
必要条件(以下内容可推正定): a i i > 0 和 ∣ A ∣ > 0 a_{ii}>0和|A|>0 aii>0和∣A∣>0
对角矩阵
[ a 0 0 ⋯ 0 b 0 ⋯ 0 0 c ⋯ ⋮ ⋮ ⋮ ] \left[\begin{matrix}a& 0& 0& \cdots \\0& b& 0& \cdots \\0& 0& c& \cdots \\\vdots & \vdots & \vdots\end{matrix} \right] ⎣⎢⎢⎢⎡a00⋮0b0⋮00c⋮⋯⋯⋯⎦⎥⎥⎥⎤
就长上边这样,rnm这矩阵也太难打了,这辈子都不想打几次
相似
跟正交矩阵有点类似, P − 1 A P = B P^{-1}AP=B P−1AP=B,则AB相似,写作A~B, 如果A~ Λ \Lambda Λ,那么 Λ \Lambda Λ是A的相似标准型
相似的必要条件
- 特征多项式相同, ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-B| ∣λE−A∣=∣λE−B∣
- 秩相同
- 行列式相同=特征值的积相同
- 特征值相同
- 迹相同=主对角线元素之和相同=特征值之和= α T α \alpha^T\alpha αTα
其中, α T α 为 主 对 角 线 元 素 之 和 , α α T 为 矩 阵 , α 为 列 向 量 \alpha^T\alpha为主对角线元素之和,\alpha\alpha^T为矩阵,\alpha为列向量 αTα为主对角线元素之和,ααT为矩阵,α为列向量
对角化
就是写成对角阵,主对角线上全为特征值的样子,不要随便提一整行的系数出去,矩阵不是这样计算的,行列式才是