特征值法解常系数线性微分方程解法总结

为了有更好的阅读体验,请移步至 https://www.cnblogs.com/beta2187/p/15475852.html 阅读本文。

1. 引言

本文主要讲常系数线性微分方程的特征值法做了总结。在文献[1]的4.2节,详细介绍了常系数线性微分方程的解法,对特征方程根的各种情况(实根或复根&根的重数)进行分类讲解,但由于分类过于仔细,使得读者对根的情况的记忆比较困难,本文致力于将特征根的各种情形统一处理,便于对微分方程解进行记忆.
#2. 准备知识
  本节所有的研究都是围绕着方程
d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n − 1 ( t ) d x d t + a n ( t ) x = f ( x ) ( 1 ) \frac{d^nx}{d t^n}+a_1(t)\frac{d ^{n-1}x}{d t^{n-1}}+ \cdots +a_{n-1}(t)\frac{d x}{d t}+a_n(t)x=f(x) \qquad (1) dtndnx+a1(t)dtn1dn1x++an1(t)dtdx+an(t)x=f(x)(1)
进行的.其中 a i ( t ) ( i = 1 , 2 , ⋯   , n ) a_i(t)(i=1,2,\cdots,n) ai(t)(i=1,2,,n) f ( t ) f(t) f(t) 都是区间 [ a , b ] [a, b] [a,b] 上的连续函数.
如果{} f ( t ) ≡ 0 f(t)\equiv 0 f(t)0,则方程(1)变为
\begin{equation}
\frac{d^nx}{d tn}+a_1(t)\frac{d{n-1}x}{dt^{n-1}}+ \cdots +a_{n-1}(t)\frac{d x}{d t}+a_n(t)x=0 \qquad (2)
\end{equation}
设 $K=\alpha + i i i\beta$ 是任意复数,这里 α , β \alpha,\beta α,β 是实数, t t t 为实变量,那么有
\begin{equation}\label{dingyi}
e^{Kt} = e^{(\alpha + \text{i}\beta )t}=e^{\alpha t}(\cos{\beta t} + \text{i}\sin{\beta t})\qquad (3)
\end{equation}
此公式可通过泰勒展开进行验证.
   定理1.1 如果方程(2)中所有系数 a i ( t ) ( i = 1 , 2 , ⋯   , n ) a_i(t)(i=1,2,\cdots,n) ai(t)(i=1,2,,n) 都是实值函数,而 x = z ( t ) = φ ( t ) + i ψ ( t ) x=z(t)=\varphi(t)+\text{i}\psi(t) x=z(t)=φ(t)+iψ(t) 是方程的复值解,则 z ( t ) z(t) z(t) 的实部 φ ( t ) \varphi(t) φ(t),虚部 ψ ( t ) \psi(t) ψ(t) 和共轭复数 z ‾ ( t ) \overline{z}(t) z(t) 也都是方程(2)的解.
   定理1.2若方程
d n x d t n + a 1 ( t ) d n − 1 x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值