Chapter 1 Introduction

强化学习的主要组成:agent, environment, a policy, a reward signal, a value function, [a model of the environment]

Reinforcement learning is a computational approach to understanding and automating goal-directed learning and decision making.

Reinforcement learning uses the formal framework of Markov decision processes to define the interaction between a learning agent and its environment in terms of states, actions, and rewards.

An Extended Example: Tic-Tac-Toe

游戏如下图

Tic-Tac-Toe

A sequence of tic-tac-toe moves

大多数时候move greedily(move lead to the state with greatest value)

偶尔exploratory move(moves experience state that we might otherwise never see)

如下称为temporal-difference learning method

the update to the estimated value of s can be written below

V(s)V(s)+α[V(s)V(s)] V ( s ) ← V ( s ) + α [ V ( s ′ ) − V ( s ) ]

  • s s denote the state before the greedy move
  • s denote the state after the move
  • α α denote the step-size parameter, which influence the rate of learning

The tic-tac-toe player is model-free in this sense with respect to its opponent: it has no model of its opponent of any kind

sumary

The use of value functions distinguishes reinforcement learning methods from evolutionary methods that search directly in policy space guided by scalar evaluations of entire policies.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值