8.00 开始学习
常微分方程数值解法——龙格库塔法(RK法)
- RK法的K的个数就是其精度的阶数,常用的有四阶RK法
K1=f(x(i),y(i))
K2=f(x(i)+h/2,y(i)+h*K1/2)
K3=f(x(i)+h/2,y(i)+h*K2/2)
K4=f(x(i)+h,y(i)+h*K3)
- 精度阶数:若某方法局部截断误差满足
T(n+1)=y(x+h)-y(x)-hφ(x,y,h)=O(h^(p+1)),
则称该方法具有p阶精度。
其中, φ(x,y,h)为增量函数。
- 局部截断误差和整体截断误差
y(x(n+1))-y(n+1)=y(x(n+1))-[y(n)+hφ(x(n),y(n),h)]
=y(x(n+1))-y(x(n))-hφ(x(n),y(n),h)=T(n+1)
上式为局部截断误差。
e(n)=y(x(n))-y(n)
上式就是整体截断误差。其中,y(x(n)) 为精确解, y(n) 为数值解(近似解)。
注:对于整体截断误差,若某方法具有p阶精度,则e(n)=y(x(n))-y(n)=O(h^p),与局部截断误差是不同的。也就是说每个
局部的误差为p+1阶,整体的误差为p阶。
- 一阶方程组的RK法
- 化高阶方程为一阶方程组的RK法