Rung-Kutta法及单步法的收敛性和稳定性分析
1. 引言
在《数值分析(11):常微分方程的数值解法之Euler法》中已经介绍了常微分方程的数值解法的一种方法,显式Euler法,这种方法可以通过泰勒展开得到,即:
取前两项即得到显式Euler法:
y ( x n + 1
在《数值分析(11):常微分方程的数值解法之Euler法》中已经介绍了常微分方程的数值解法的一种方法,显式Euler法,这种方法可以通过泰勒展开得到,即:
取前两项即得到显式Euler法:
y ( x n + 1