两条线段是否相交,计算交点公式。

本文详细介绍了如何使用直线方程求解两直线的交点,并提供了Java代码实现,包括平行、重合、相交等不同情况的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A本身无限长,假设B也无限长,直接求得AB的交点坐标,然后再判断该坐标是否在定长线段B的内部就可以了啊 

    AB本身就是两条直线,知道两端点就可以知道其直线方程,B也是一样,两个方程联立,
    得到一个坐标,再看该坐标是否在B的定义域内就可以啊 
    
    A的两点为(x1,y1),(x2,y2)
    则A的直线方程为l1:y-y1=(y2-y1)(x-x1)/(x2-x1)
    B的两点为(x3,y3),(x4,y4)
    则B的直线方程为l2:y-y3=(y4-y3)(x-x3)/(x4-x3)
    
    联立解出交点坐标为的横坐标为:
    x=(k2x3-y3-k1x1+y1)/(k2-k1)
    其中k1=(y2-y1)/(x2-x1)
          k2=(y4-y3)/(x4-x3)    
    可以推导出来
    x = ((x2 - x1) * (x3 - x4) * (y3 - y1) - 
            x3 * (x2 - x1) * (y3 - y4) + x1 * (y2 - y1) * (x3 - x4)) / 
            ((y2 - y1) * (x3 - x4) - (x2 - x1) * (y3 - y4));

    同理也可以推导出y的值:

    y = ((y2 - y1) * (y3 - y4) * (x3 - x1) - 
            y3 * (y2 - y1) * (x3 - x4) + y1 * (x2 - x1) * (y3 - y4)) / 
            ((y2 - y1) * (y3 - y4) - (y2 - y1) * (x3 - x4));

 

 

总结:

  1. //第一条直线  
  2. double x1 = 10, y1 = 20, x2 = 100, y2 = 200;   
  3. double a = (y1 - y2) / (x1 - x2);  
  4. double b = (x1 * y2 - x2 * y1) / (x1 - x2);  
  5. System.out.println("求出该直线方程为: y=" + a + "x + " + b);  
  6.   
  7. //第二条  
  8. double x3 = 50, y3 = 20, x4 = 20, y4 = 100;  
  9. double c = (y3 - y4) / (x3 - x4);  
  10. double d = (x3 * y4 - x4 * y3) / (x3 - x4);  
  11. System.out.println("求出该直线方程为: y=" + c + "x + " + d);  
  12.   
  13. double x = ((x1 - x2) * (x3 * y4 - x4 * y3) - (x3 - x4) * (x1 * y2 - x2 * y1))  
  14.     / ((x3 - x4) * (y1 - y2) - (x1 - x2) * (y3 - y4));  
  15.   
  16. double y = ((y1 - y2) * (x3 * y4 - x4 * y3) - (x1 * y2 - x2 * y1) * (y3 - y4))  
  17.     / ((y1 - y2) * (x3 - x4) - (x1 - x2) * (y3 - y4));  
  18.   
  19. System.out.println("他们的交点为: (" + x + "," + y + ")"); 

********************************************************************

下面附上java的实现,

前提是:a 线段1起点坐标

            b 线段1终点坐标

            c 线段2起点坐标

            d 线段2终点坐标

 

import java.awt.Point;

public class AlgorithmUtil {

    public static void main(String[] args) {
        AlgorithmUtil.GetIntersection(new Point(1, 2), new Point(1, 2),
                new Point(1, 2), new Point(1, 2));
        AlgorithmUtil.GetIntersection(new Point(1, 2), new Point(1, 2),
                new Point(1, 4), new Point(1, 4));
        AlgorithmUtil.GetIntersection(new Point(100, 1), new Point(100, 100),
                new Point(100, 101), new Point(100, 400));
        AlgorithmUtil.GetIntersection(new Point(5, 5), new Point(100, 100),
                new Point(100, 5), new Point(5, 100));
    }

    /**
     * 判断两条线是否相交 a 线段1起点坐标 b 线段1终点坐标 c 线段2起点坐标 d 线段2终点坐标 intersection 相交点坐标
     * reutrn 是否相交: 0 : 两线平行 -1 : 不平行且未相交 1 : 两线相交
     */

    private static int GetIntersection(Point a, Point b, Point c, Point d) {
        Point intersection = new Point(0, 0);

        if (Math.abs(b.y - a.y) + Math.abs(b.x - a.x) + Math.abs(d.y - c.y)
                + Math.abs(d.x - c.x) == 0) {
            if ((c.x - a.x) + (c.y - a.y) == 0) {
                System.out.println("ABCD是同一个点!");
            } else {
                System.out.println("AB是一个点,CD是一个点,且AC不同!");
            }
            return 0;
        }

        if (Math.abs(b.y - a.y) + Math.abs(b.x - a.x) == 0) {
            if ((a.x - d.x) * (c.y - d.y) - (a.y - d.y) * (c.x - d.x) == 0) {
                System.out.println("A、B是一个点,且在CD线段上!");
            } else {
                System.out.println("A、B是一个点,且不在CD线段上!");
            }
            return 0;
        }
        if (Math.abs(d.y - c.y) + Math.abs(d.x - c.x) == 0) {
            if ((d.x - b.x) * (a.y - b.y) - (d.y - b.y) * (a.x - b.x) == 0) {
                System.out.println("C、D是一个点,且在AB线段上!");
            } else {
                System.out.println("C、D是一个点,且不在AB线段上!");
            }
            return 0;
        }

        if ((b.y - a.y) * (c.x - d.x) - (b.x - a.x) * (c.y - d.y) == 0) {
            System.out.println("线段平行,无交点!");
            return 0;
        }

        intersection.x = ((b.x - a.x) * (c.x - d.x) * (c.y - a.y) - 
                c.x * (b.x - a.x) * (c.y - d.y) + a.x * (b.y - a.y) * (c.x - d.x)) / 
                ((b.y - a.y) * (c.x - d.x) - (b.x - a.x) * (c.y - d.y));
        intersection.y = ((b.y - a.y) * (c.y - d.y) * (c.x - a.x) - c.y
                * (b.y - a.y) * (c.x - d.x) + a.y * (b.x - a.x) * (c.y - d.y))
                / ((b.x - a.x) * (c.y - d.y) - (b.y - a.y) * (c.x - d.x));

        if ((intersection.x - a.x) * (intersection.x - b.x) <= 0
                && (intersection.x - c.x) * (intersection.x - d.x) <= 0
                && (intersection.y - a.y) * (intersection.y - b.y) <= 0
                && (intersection.y - c.y) * (intersection.y - d.y) <= 0) {
            
            System.out.println("线段相交于点(" + intersection.x + "," + intersection.y + ")!");
            return 1; // '相交
        } else {
            System.out.println("线段相交于虚交点(" + intersection.x + "," + intersection.y + ")!");
            return -1; // '相交但不在线段上
        }
    }
}
 

 

 

========================下面是找到的另外的一种方法====================

 

 

第二种方法: 利用斜率公式, 直线方程为ax+bx+c=0, 先求出a,b,c, 然后再求出交点 

Java代码   收藏代码
  1. public static void main(String[] args) {  
  2.     Point2D p1 = new Point2D.Double(1020);  
  3.     Point2D p2 = new Point2D.Double(100200);  
  4.       
  5.     Point2D p3 = new Point2D.Double(5020);  
  6.     Point2D p4 = new Point2D.Double(20100);  
  7.       
  8.     Param pm1 = CalParam(p1, p2);  
  9.     Param pm2 = CalParam(p3, p4);  
  10.     Point2D rp = getIntersectPoint(pm1, pm2);  
  11.     System.out.println("他们的交点为: (" + rp.getX() + "," + rp.getY() + ")");  
  12. }  
  13.   
  14. /** 
  15.  * 计算两点的直线方程的参数a,b,c 
  16.  * @param p1 
  17.  * @param p2 
  18.  * @return 
  19.  */  
  20. public static Param CalParam(Point2D p1, Point2D p2){  
  21.     double a,b,c;  
  22.     double x1 = p1.getX(), y1 = p1.getY(), x2 = p2.getX(), y2 = p2.getY();  
  23.     a = y2 - y1;  
  24.     b = x1 - x2;  
  25.     c = (x2 - x1) * y1 - (y2 - y1) * x1;  
  26.     if (b < 0) {  
  27.         a *= -1; b *= -1; c *= -1;  
  28.     }else if (b == 0 && a < 0) {  
  29.         a *= -1; c *= -1;  
  30.     }  
  31.     return new Param(a, b, c);  
  32. }  
  33.   
  34. /** 
  35.  * 计算两条直线的交点 
  36.  * @param pm1 
  37.  * @param pm2 
  38.  * @return 
  39.  */  
  40. public static Point2D getIntersectPoint(Param pm1, Param pm2){  
  41.     return getIntersectPoint(pm1.a, pm1.b, pm1.c, pm2.a, pm2.b, pm2.c);  
  42. }  
  43.   
  44. public static Point2D getIntersectPoint(double a1, double b1, double c1, double a2, double b2, double c2){  
  45.     Point2D p = null;  
  46.     double m = a1 * b2 - a2 * b1;  
  47.     if (m == 0) {  
  48.         return null;  
  49.     }  
  50.     double x = (c2 * b1 - c1 * b2) / m;  
  51.     double y = (c1 * a2 - c2 * a1) / m;  
  52.     p = new Point2D.Double(x, y);  
  53.     return p;  
  54. }  


输出的结果为: 

Java代码   收藏代码
  1. 求出该直线方程为: y=2.0x + -0.0  
  2. 求出该直线方程为: y=-2.6666666666666665x + 153.33333333333334  
  3. 他们的交点为: (32.857142857142854,65.71428571428571)  
  4. 他们的交点为: (32.857142857142854,65.71428571428571)  

 

### 判断两条线段是否相交计算交点 为了确定两条线段是否相交,可以采用几何方法来解决这个问题。具体来说,可以通过向量叉积的方式来检测两线段是否有交叉。 #### 向量叉积法 对于给定的两个端点分别为 \((x_1, y_1)\),\((x_2, y_2)\) 的第一条线段 \(L_1\) 和另一条具有不同端点 \((x_3, y_3)\),\((x_4, y_4)\) 的第二条线段 \(L_2\) ,如果这两条线段相交,则意味着存在某个时刻一条线段上的任意一点到另外一条线段两端点所形成的三角形方向相反[^1]。 通过计算四个叉乘值: \[ d1 = direction(p3, p4, p1); \] \[ d2 = direction(p3, p4, p2); \] \[ d3 = direction(p1, p2, p3); \] \[ d4 = direction(p1, p2, p4); \] 其中 `direction` 函数定义如下: ```cpp double direction(Point pi, Point pj, Point pk){ return (pj.x - pi.x)*(pk.y - pi.y)-(pk.x - pi.x)*(pj.y - pi.y); } ``` 当满足条件 `(d1 * d2 < 0)` 并且 `(d3 * d4 < 0)` 时,说明两条线段确实发生了交叉。 #### 计算交点坐标 一旦确认了两条直线会相交之后,就可以利用参数方程求解具体的交点了。设第一个线段的方向向量为 \(\vec{v}=(dx1=x_2-x_1,\ dy1=y_2-y_1)\),第二个线段的方向向量为 \(\vec{w}=(dx2=x_4-x_3,\ dy2=y_4-y_3)\)。 令 t 表示沿着 L1 移动的比例因子;u 表示沿 L2 移动的比例因子。那么可以根据下面公式得到交点位置: \[ u=((x_1-x_3)*(dy1)-(y_1-y_3)*(dx1))/((dx2*dy1-dx1*dy2)) \] \[ x=x_3+u*dx2; \] \[ y=y_3+u*dy2; \] 这里需要注意的是,在实际编程实现过程中应该考虑除数可能为零的情况(即平行或共线),此时应返回不相交的结果。 ```cpp Point getIntersection(Point p1, Point p2, Point p3, Point p4){ double dx1=p2.x-p1.x; double dy1=p2.y-p1.y; double dx2=p4.x-p3.x; double dy2=p4.y-p3.y; double denom=dx2*dy1-dx1*dy2; if(denom==0){ // parallel or collinear throw std::invalid_argument("Lines do not intersect"); } double ua=((p3.x-p1.x)*dy2-(p3.y-p1.y)*dx2)/denom; double ub=((p2.x-p1.x)*dy1-(p2.y-p1.y)*dx1)/denom; if(ua>=0 && ua<=1 && ub>=0 && ub<=1){ return {p1.x+ua*(p2.x-p1.x), p1.y+ua*(p2.y-p1.y)}; }else{ throw std::invalid_argument("Lines do not intersect within segment bounds"); } } ``` 上述算法能够有效地判断两条线段之间是否存在交集,并能精确地定位出交点的位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值