题意:
Alice和Bob玩了一个古老的游戏:首先画一个 n×nn×n 的点阵(下图 n=3n=3 )。
接着,他们两个轮流在相邻的点之间画上红边和蓝边:
直到围成一个封闭的圈(面积不必为 11)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了,他们的游戏实在是太长了!
他们甚至在游戏中都不知道谁赢得了游戏。
于是请你写一个程序,帮助他们计算他们是否结束了游戏?
输入格式
输入数据第一行为两个整数 nn 和 mm。nn表示点阵的大小,mm 表示一共画了 mm 条线。
以后 mm 行,每行首先有两个数字 (x,y)(x,y),代表了画线的起点坐标,接着用空格隔开一个字符,假如字符是 DD,则是向下连一条边,如果是 RR 就是向右连一条边。
输入数据不会有重复的边且保证正确。
输出格式
输出一行:在第几步的时候结束。
假如 mm 步之后也没有结束,则输出一行“draw”。
数据范围
1≤n≤2001≤n≤200,
1≤m≤24000
示例
输入样例:
3 5 1 1 D 1 1 R 1 2 D 2 1 R 2 2 D
输出样例:
4
题解:将二维转换成一维,(x,y)->(x-1)*n+y -1 从一开始。
使用并查集,直接判断两个点的find是否相等。
如果想到把二维变成一维的话还是很简单的,直接套模板甚至不用关心优化(Rank路径的优 化)。
易错点就是从1开始计数 (x,y)->(x-1)*n+y-1,容易忽略-1
#include<iostream>
#include<algorithm>
using namespace std;
int n,m,a[50003]={0},k=888888;
int find(int x)
{
if (a[x]!=x) a[x]=find(a[x]);
return a[x];
}
int main(){
bool f=false;
cin>>n>>m;
for(int i=0;i<n*n;++i)
a[i]=i;
for(int i=0;i<m;++i)
{
int x,y;
char s;
cin>>x>>y>>s;
if(s=='D')
{
if(find((x-1)*n+y-1)==find((x)*n+y-1))
{
f=true;
k=min(k,i+1);
}
else{
a[find((x)*n+y-1)]=find((x-1)*n+y-1);
}
}
else {
if(find((x-1)*n+y-1)==find((x-1)*n+y))
{ f=true;
k=min(k,i+1);
}
else{
a[find((x-1)*n+y)]=find((x-1)*n+y-1);
}
}
}
if(f)
cout<<k<<endl;
else cout<<"draw"<<endl;
}