使用Ollama和OpenAI实现多查询检索生成回答
引言
在现代信息检索和问答系统中,如何从大量数据中找到最相关的信息并合成回答成为一大挑战。本文将介绍如何使用Ollama与OpenAI结合,通过多查询检索(Multi-query Retriever)来提高问答系统的准确性和质量。
主要内容
多查询检索概述
多查询检索是通过将用户输入的单个查询转化为多个不同视角的查询,以此生成多个相关文档集,并求其集合以用于答案合成的方法。
Ollama与OpenAI的角色
- Ollama:用于本地生成查询,降低请求大型API模型的频率,适用于狭窄任务。
- OpenAI:负责更复杂的答案合成,为用户提供详细解答。
环境设置
首先,安装Ollama并选择合适的LLM(本文使用zephyr
)。
ollama pull zephyr
然后,设置OpenAI API密钥以访问模型。
export OPENAI_API_KEY=<your-openai-api-key>
安装并配置LangChain
安装LangChain CLI并创建项目:
pip install -U langchain-cli
langchain app new my-app --package rag-ollama-multi-query
若在现有项目中添加此功能:
langchain app add rag-ollama-multi-query
在server.py
中添加以下代码:
from rag_ollama_multi_query import chain as rag_ollama_multi_query_chain
add_routes(app, rag_ollama_multi_query_chain, path="/rag-ollama-multi-query")
配置LangSmith(可选)
LangSmith用于监控和调试LangChain应用。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langsmith-api-key>
export LANGCHAIN_PROJECT=<your-project>
代码示例
以下是如何通过代码访问模板的示例:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-ollama-multi-query") # 使用API代理服务提高访问稳定性
常见问题和解决方案
网络限制
由于网络限制,开发者在某些地区可能需要使用API代理服务以确保访问的稳定性。
API调用次数限制
通过在本地使用Ollama进行查询生成,可以有效减少对大型API的调用次数,从而降低成本。
总结和进一步学习资源
本文介绍了如何结合Ollama和OpenAI,通过多查询检索提升问答系统质量。为了深入学习,建议参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—