【深度学习】(10) 自定义学习率衰减策略(指数、分段、余弦),附TensorFlow完整代码

本文详细介绍了如何在TensorFlow中自定义指数、阶梯和余弦学习率下降方法,并通过Mnist数据集验证其效果。文章首先解释了三种学习率策略的数学公式,然后展示了如何创建自定义的学习率调度器类,包括指数衰减、分段常数衰减和余弦衰减。通过实例代码,作者演示了如何在模型训练中应用这些学习率策略,并给出了学习率变化的可视化结果。
摘要由CSDN通过智能技术生成

大家好,今天和大家分享一下如何使用 TensorFlow 自定义 指数学习率下降阶梯学习率下降余弦学习率下降 方法,并使用 Mnist数据集验证自定义的学习率下降策略

创建的自定义学习率类方法,需要继承 tf.keras.optimizers.schedules.LearningRateSchedule


1. 指数学习率下降

指数学习率下降公式为: \alpha _{t} = \alpha _{0} \cdot \beta ^{n}

其中 \alpha _{0} 代表初始的学习率,\beta 代表学习率衰减系数,n 代表epoch,即每次迭代学习率衰减一次

以初始学习率 \alpha _{0}=0.001 ,学习率衰减系数 \beta =0.9 ,n = epoch 为例指数学习率下降曲线如下图所示。

如果以step作为指数调整的标准,那么指数 n 等于当前的 step 除以 一个 epoch 包含的总 step。

我这里以 epoch 作为指数调整的标准。


首先创建一个学习率自定义类,继承 keras.optimizers.schedules.LearningRateSchedule 自定义学习率调度器

先对所有的属性完成初始化,其中 self.current 返回训练时每一个 step 的学习率self.epoch 代表指数学习率计算公式中的指数项 n,self.learning_rate_list 用于记录训练时每个 epoch 的学习率

在__call__方法中,step % self.print_step,其中 step 代表训练时传入的当前的 step,而 print_step外部指定的每经过多少个step调整一次学习率,并记录下当前 epoch 的学习率,返回调整后的学习率如果不满足 if 条件,那么这些 step 的学习率就是上一次调整后的学习率

以 epoch 作为指数调整标准的代码如下:

# ------------------------------------------------------------------ #
# 当前学习率 = 初始学习率 * 衰减系数 ^{迭代了多少次}
# ------------------------------------------------------------------ #
# eager模式防止graph报错
tf.config.experimental_run_functions_eagerly(True)
# ------------------------------------------------------------------ #
# 继承学习率的类
class ExponentialDecay(keras.optimizers.schedules.LearningRateSchedule):
    '''
    initial_lr: 初始的学习率
    decay_rate: 学习率衰减系数
    min_lr: 学习率下降的最小
    print_step: 训练时多少个batch打印一次学习率
    '''
    
    # 初始化
    def __init__(self, initial_lr, decay_rate, min_lr, print_step):
        # 继承父类的初始化方法
        super(ExponentialDecay, self).__init__()
        
        # 属性分配
        self.initial_lr = tf.cast(initial_lr, tf.float32)
        self.decay_rate = tf.cast(decay_rate, tf.float32)
        self.min_lr = tf.cast(min_lr, tf.float32) 
        self.print_step = print_step
        # 记录记录每个epoch的学习率
        self.learning_rate_list = []
        # 最开始时,学习率为初始学习率
        self.current = self.initial_lr
        # 初始的迭代次数为0
        self.epoch = 0
        
    # 前向传播
    def __call__(self, step):  

        # 每多少个batch调整一次学习率, 一个batch处理32张图
        if step % self.print_step == 0:
            
            # 学习率指数下降,设置为每个epoch调整一次
            learning_rate = self.initial_lr * pow(self.decay_rate, self.epoch)
            
            # 调整当前学习率, 每一轮的学习率不能低于最小学习率
            self.current = tf.where(learning_rate>self.min_lr, learning_rate, self.min_lr)
            
            # 迭代次数加一
            self.epoch = self.epoch + 1
            
            # 将当前学习率保存下来
            self.learning_rate_list.append(learning_rate.numpy().item())
            
            # 打印学习率变化
            print('learning_rate:', learning_rate.numpy().item())

            # 返回调整后的学习率
            return self.current
        
        # 否则就返回上一次调整的学习率
        else:
            return self.current

2. 阶梯学习率下降

思路:每经过多少个 step 之后,学习率下降为上一次的 decay_rate 倍。例如初始学习率为0.001每经过三个 epoch,学习率就下降为原来的 0.5 倍,实现分段下降,示意图如下:


首先创建一个学习率自定义类,继承 keras.optimizers.schedules.LearningRateSchedule 自定义学习率调度器

先对所有的属性完成初始化,其中 self.change_step 在外部定义,代表每经过多少个 step 调整一次学习率。调整方式是当前学习率 self.current 乘以调整倍数 self.decay_rate,得到调整后的学习率并返回结果。如果不满足 if 条件,即当前 step 不需要调整,就返回上一次调整后的学习率。self.learning_rate_list 列表中记录训练过程中的每个 epoch 的学习率,训练完成后之后可以读取查看。

# ------------------------------------------------------------------ #
# 自定义的分段常数下降方法
# ------------------------------------------------------------------ #
# eager模式防止graph报错
tf.config.experimental_run_functions_eagerly(True)
# ------------------------------------------------------------------ #
# 继承学习率的类
class PiecewiseConstantDecay(keras.optimizers.schedules.LearningRateSchedule):
    '''
    initial_lr: 初始的学习率
    decay_rate: 学习率衰减系数
    min_lr: 学习率下降的最小
    change_step: 多少个epoch下降一次
    print_step: 训练时多少个step打印一次学习率
    '''
    # 初始化
    def __init__(self, initial_lr, decay_rate, min_lr, change_step, print_step):
        # 继承父类的初始化方法
        super(PiecewiseConstantDecay, self).__init__()
        
        # 属性分配
        self.initial_lr = tf.cast(initial_lr, tf.float32)
        self.decay_rate = tf.cast(decay_rate, tf.float32)
        self.min_lr = tf.cast(min_lr, tf.float32) 
        self.change_step = change_step
        self.print_step = print_step
        
        # 记录记录每个epoch的学习率
        self.learning_rate_list = []
        # 最开始时,学习率为初始学习率
        self.current = self.initial_lr
    
    # 前向传播
    def __call__(self, step):  # 这个step不是epoch
        
        # 多少个step记录一次学习率,外部指定为一个epoch记录一次
        if step % self.print_step == 0:
            
            # 训练过程中打印每一个epoch的学习率
            print('current learning_rate is ', self.current.numpy().item())
            
            # 记录下当前epoch的学习率
            self.learning_rate_list.append(self.current.numpy().item())
        
        # 多少个step调整一次学习率
        if step % self.change_step == 0:
            
            # 计算调整后的学习率
            learning_rate = self.current * self.decay_rate
            
            # 更新当前学习率指标, 学习率不能小于指定的最小值
            self.current = tf.where(learning_rate>self.min_lr, learning_rate, self.min_lr)

            # 返回调整后的学习率
            return self.current
        
        # 如果为满足调整要求,就返回上一次调整的学习率
        else:
            return self.current

3. 余弦学习率下降

余弦学习率下降公式为:\alpha _{t} = 0.5 * \alpha _{0} \cdot (1+cos(\frac{t\cdot \pi }{T}))

其中,\alpha _{0} 代表初始学习率,t 是指当前是第几个 step,T 是指多少个 step 之后学习率衰减为0

以初始学习率为 0.001,所有 epoch 结束后学习率降为 0 为例,学习率余弦下降曲线如下:


首先创建一个学习率自定义类,继承 keras.optimizers.schedules.LearningRateSchedule 自定义学习率调度器

先对所有的属性完成初始化,其中 self.current 用来记录当前 step 的学习率self.learning_rate_list 用来记录训练时所有 step 的学习率,训练结束后可调用查看。

训练时模型会传入当前的 step,调整每一个 step 的学习率 learning_rate,并且要求调整后的学习率不能低于最小学习率 self.min_lr,使用 tf.where() 函数对比调整后的学习率和最小学习率,选出最大的作为返回结果的学习率。

# ------------------------------------------------------------------ #
# 余弦学习率下降
# ------------------------------------------------------------------ #
# eager模式防止graph报错
tf.config.experimental_run_functions_eagerly(True)
# ------------------------------------------------------------------ #
# 继承学习率的类
class CosineDecay(keras.optimizers.schedules.LearningRateSchedule):
    '''
    initial_lr: 初始的学习率
    decay_rate: 学习率衰减到最低点的步长
    min_lr: 学习率下降的最小
    print_step: 训练时多少个step打印一次学习率    
    '''
    # 初始化
    def __init__(self, initial_lr, decay_step, min_lr, print_step):
        # 继承父类初始化方法
        super(CosineDecay, self).__init__()
        
        # 属性分配
        self.initial_lr = tf.cast(initial_lr, dtype=tf.float32)
        self.decay_step = tf.cast(decay_step, dtype=tf.float32)
        self.min_lr = tf.cast(min_lr, dtype=tf.float32)
        self.print_step = print_step
        
        # 最开始的当前学习率等于初始学习率
        self.current = self.initial_lr
        # 记录每个epoch的学习率值
        self.learning_rate_list = []
        
        
    # 前向传播
    def __call__(self, step):
        
        # 余弦衰减计算公式
        learning_rate = 0.5 * self.initial_lr * (1 + tf.math.cos(step*math.pi / self.decay_step))
        
        # 更新当前学习率指标, 学习率不能小于指定的最小值
        self.current = tf.where(learning_rate>self.min_lr, learning_rate, self.min_lr)
        
        # 记录每个step的学习率
        self.learning_rate_list.append(self.current.numpy().item())
        
        # 多少个step打印一次学习率,外部设置每个epoch打印一次学习率
        if step % self.print_step == 0:
            # 在训练时打印当前学习率
            print('learning_rate has changed to: ', self.current.numpy().item())
        
        return self.current

4. 实验验证

这里以学习率余弦衰减策略为例,来验证上面定义的学习率方法能不能用。

数据预处理和模型构建部分就不讲了,这部分都很基础。直接看到第(6)部分模型训练

首先需要对我们定义的学习率下降的类 CosineDecay 进行实例化,传入计算公式中所需的初始学习率 initial_lr余弦值下降到0所需的步长 decay_step,用变量 cosinedecay 来接收。

将自定义的学习率衰减方法传入至Adam优化器,这样在训练时就能接收到模型传入的每个step,用于计算衰减。

自定义方法也可以参照官方文档:自定义的学习速率调度

以Mnist手写数据集图像10分类问题为例,完整代码如下:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
import math

# 调用GPU加速
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)


# ------------------------------------------------------------------ #
# (1)读取手写数字数据集
# ------------------------------------------------------------------ #
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train.shape:', x_train.shape, 'y_train.shape:', y_train.shape) # (60000, 28, 28) , (60000,)
print('x_test.shape:', x_test.shape)  # (10000, 28, 28)

# 记录一共训练多少张图
total_train_num = x_train.shape[0]


# ------------------------------------------------------------------ #
# (2)余弦学习率下降
# ------------------------------------------------------------------ #
# eager模式防止graph报错
tf.config.experimental_run_functions_eagerly(True)
# ------------------------------------------------------------------ #
# 继承学习率的类

class CosineDecay(keras.optimizers.schedules.LearningRateSchedule):
    '''
    initial_lr: 初始的学习率
    decay_rate: 学习率衰减到最低点的步长
    min_lr: 学习率下降的最小
    print_step: 训练时多少个step打印一次学习率    
    '''
    # 初始化
    def __init__(self, initial_lr, decay_step, min_lr, print_step):
        # 继承父类初始化方法
        super(CosineDecay, self).__init__()
        
        # 属性分配
        self.initial_lr = tf.cast(initial_lr, dtype=tf.float32)
        self.decay_step = tf.cast(decay_step, dtype=tf.float32)
        self.min_lr = tf.cast(min_lr, dtype=tf.float32)
        self.print_step = print_step
        
        # 最开始的当前学习率等于初始学习率
        self.current = self.initial_lr
        # 记录每个epoch的学习率值
        self.learning_rate_list = []
        
        
    # 前向传播
    def __call__(self, step):
        
        # 余弦衰减计算公式
        learning_rate = 0.5 * self.initial_lr * (1 + tf.math.cos(step*math.pi / self.decay_step))
        
        # 更新当前学习率指标, 学习率不能小于指定的最小值
        self.current = tf.where(learning_rate>self.min_lr, learning_rate, self.min_lr)
        
        # 记录每个step的学习率
        self.learning_rate_list.append(self.current.numpy().item())
        
        # 多少个step打印一次学习率,外部设置每个epoch打印一次学习率
        if step % self.print_step == 0:
            # 在训练时打印当前学习率
            print('learning_rate has changed to: ', self.current.numpy().item())
        
        return self.current


# ------------------------------------------------------------------ #
# (3)参数设置
# ------------------------------------------------------------------ #
# 每个step处理32张图
batch_size = 32
# 迭代次数
num_epochs = 10
# 初始学习率
initial_lr = 0.001
# 学习率衰减系数
decay_rate = 0.9
# 学习率下降的最小值
min_lr = 0

# 每个epoch打印一次学习率, 1个batch处理32张图
# 共60000张图,需要60000/32个batch,即1875个step
print_step = total_train_num / batch_size
# 余弦下降到0所需的步长
decay_step = total_train_num / batch_size * num_epochs


# ------------------------------------------------------------------ #
# (4)构造数据集
# ------------------------------------------------------------------ #
def processing(x,y):  # 预处理函数
    x = 2 * tf.cast(x, dtype=tf.float32)/255.0 - 1   # 归一化
    x = tf.expand_dims(x, axis=-1)  # 增加通道维度
    y = tf.cast(y, dtype=tf.int32)  
    return x,y
 
# 构造训练集
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) 
train_ds = train_ds.map(processing).batch(batch_size).shuffle(10000)
# 构造测试集
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)) 
test_ds = test_ds.map(processing).batch(batch_size)
 
# 迭代器查看数据是否正确
sample = next(iter(train_ds))  
print('x_batch:', sample[0].shape, 'y_batch:', sample[1].shape)  # (32, 28, 28, 1), (32,)


# ------------------------------------------------------------------ #
# (5)构造模型
# ------------------------------------------------------------------ #
inputs = keras.Input(sample[0].shape[1:])  # 构造输入层
# [28,28,1]==>[28,28,32]
x = layers.Conv2D(32, kernel_size=3, padding='same', activation='relu')(inputs)
# [28,28,32]==>[14,14,32]
x = layers.MaxPool2D(pool_size=(2,2), strides=2, padding='same')(x)
# [14,14,32]==>[14,14,64]
x = layers.Conv2D(64, kernel_size=3, padding='same', activation='relu')(x)
# [14,14,64]==>[7,7,64]
x = layers.MaxPool2D(pool_size=(2,2), strides=2, padding='same')(x)
# [7,7,64]==>[None,7*7*64]
x = layers.Flatten()(x)
# [None,7*7*64]==>[None,128]
x = layers.Dense(128)(x)
# [None,128]==>[None,10]
outputs = layers.Dense(10, activation='softmax')(x)
# 构建模型
model = keras.Model(inputs, outputs)
# 查看模型结构
model.summary()


# ------------------------------------------------------------------ #
# (6)模型训练
# ------------------------------------------------------------------ #
# 接收学习率调整方法
cosinedecay = CosineDecay(initial_lr=initial_lr,  # 初始学习率
                                    decay_step=decay_step,  # 学习率衰减系数
                                    min_lr=min_lr,          # 最小学习率值
                                    print_step=print_step)  # 每个epoch打印一次学习率值

# 设置adam优化器,指定学习率
opt = keras.optimizers.Adam(cosinedecay)

# 网络编译
model.compile(optimizer=opt,   # 学习率
              loss='sparse_categorical_crossentropy',  # 损失
              metrics=['accuracy'])  # 监控指标

# 网络训练
model.fit(train_ds, epochs=num_epochs, validation_data=test_ds)

# 绘制学习率变化曲线
plt.plot(range(decay_step), cosinedecay.learning_rate_list)
plt.xlabel("Train step")
plt.ylabel("Learning_Rate")
plt.title('cosinedecay')
plt.grid()
plt.show()

打印训练过程,可以看到每个epoch都打印了当前的学习率

Epoch 1/10
learning_rate has changed to:  0.0010000000474974513
313/313 [==============================] - 6s 19ms/step - loss: 0.6491 - accuracy: 0.7977 - val_loss: 0.0725 - val_accuracy: 0.9783
Epoch 2/10
learning_rate has changed to:  0.0009755282662808895
313/313 [==============================] - 6s 18ms/step - loss: 0.0673 - accuracy: 0.9793 - val_loss: 0.0278 - val_accuracy: 0.9911
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Epoch 9/10
learning_rate has changed to:  9.54914721660316e-05
313/313 [==============================] - 6s 18ms/step - loss: 8.1648e-04 - accuracy: 1.0000 - val_loss: 7.3570e-04 - val_accuracy: 1.0000
Epoch 10/10
learning_rate has changed to:  2.4471701181028038e-05
313/313 [==============================] - 6s 19ms/step - loss: 8.0403e-04 - accuracy: 1.0000 - val_loss: 7.2831e-04 - val_accuracy: 1.0000

绘制学习率曲线,每个epoch的学习率保存在了 self.learning_rate_list 列表中,通过 cosinedecay.learning_rate_list 调用该列表

PyTorch余弦衰减学习率策略是指在训练过程学习率按照余弦函数的形式进行衰减。这种策略在论文"Stochastic Gradient Descent with Warm Restarts"首次提出,并被广泛应用于深度学习余弦衰减策略的原理是根据余弦函数的特性,学习率在训练的前期较大,有利于快速收敛,然后逐渐减小,有助于细致调整模型参数。这种衰减方式可以使模型在训练过程逐渐变得更加稳定。 在PyTorch,可以使用torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min, last_epoch=-1)函数来实现余弦衰减策略。其,optimizer是优化器,T_max是一个周期的长度,eta_min是学习率的最小值,last_epoch是当前训练的轮数。通过设置这些参数,可以控制余弦衰减策略的效果。 下面是一个使用余弦衰减策略的例子: ``` optimizer = torch.optim.SGD(model.parameters(), lr=0.1) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.01) for epoch in range(100): train(...) validate(...) scheduler.step() ``` 在这个例子,优化器使用了随机梯度下降(SGD)算法,初始学习率为0.1。每个周期的长度设置为10学习率最小值为0.01。在每个训练轮数结束后,调用scheduler.step()来更新学习率。通过这种方式,可以实现余弦衰减的效果。 <span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值