论文阅读:Deep Neural Networks for Object Detection

本文探讨2013年发表的论文《Deep Neural Networks for Object Detection》,研究如何使用DNN进行物体检测,包括对象边界框的二进制掩码生成、网络结构解析、存在的不足及解决方案,如使用多个mask提升定位准确性。
摘要由CSDN通过智能技术生成

最近一直在看论文,感觉一直看也不是个办法,不如写写看心得体会。如果能遇到志同道合的朋友,那就更棒啦!话不多说,就来讲讲今天看的这篇论文好了:《Deep Neural Networks for Object Detection》。

之所以会选择这一篇论文是在知乎上推荐的126篇殿堂级深度学习论文分类整理 从入门到应用,这个排在了第一位,觉得可以看一下。同样是在逛知乎,看到有好心的大佬整理出来物体检测的几篇论文,还十分贴心的把顺序也标出来了,在此对大佬表示感谢。如何评价rcnn、fast-rcnn和faster-rcnn这一系列方法?

这篇论文算得上是比较早期的一篇论文了,在2013年的时候发表的。文章提出物体检测问题的概念:不仅仅要关注图片分类,而且还要进行准确的评估图像中出现物品的种类以及位置。文章中有给出基于DNN回归的对象检测的示意图:
基于DNN回归的对象检测的示意图

主要流程如下:

  1. 基于DNN回归的方法输出对象边界框的二进制掩码。这里要指出,不仅是可以对整个对象边界框输出二进制掩码,同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值