【深度学习论文笔记:Recognition】:Deep Neural Networks for Object Detection

本文是对'Deep Neural Networks for Object Detection'论文的笔记,探讨了如何利用DNN进行物体识别与定位。DNN通过回归方法处理识别与定位问题,避免滑动窗口,提高了效率。通过多尺度扫描框提升定位准确性,最后用分类网络的最后一层替换为回归层,以确定物体位置。
摘要由CSDN通过智能技术生成
本文为论文“Deep Neural Networks for Object Detection”阅读笔记,欢迎交流学习。

论文原文:http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

本文解决的问题:使用DNN,检测一幅图片里大量拥有不同尺度的不同物体(detect a potentially large number object instances with varying sizes in the same image)。

本文核心思想:

DNN-based regression,识别+定位。作者将识别看作回归(regression)问题,DNN不但学习到物体的特征,还捕获了物体的几何信息,避免使用滑动窗口(速度问题)。基于DNN的对象掩模的回归,如图1所示。 基于此回归模型,可以为完整对象以及部分对象生成掩码。 单个DNN回归可以为我们提供图像中多个对象的掩码。 为了进一步提高定位的精度,将DNN定位器应用于一小组大子窗口上。全流程如图2所示。

注意:文章中提到的masks,即掩码。掩码简单的说,就是设置一些区域,使其不参加处理。图像的掩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值