Python实现数据可视化-折线图 6.1

 仅供自己学习和参考,欢迎交流

import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts, LegendOpts, VisualMapOpts, ToolboxOpts

f_us = open("D:/美国.txt", "r", encoding="UTF-8")
f_in = open("D:/印度.txt", "r", encoding="UTF-8")
f_jp = open("D:/日本.txt", "r", encoding="UTF-8")

us_date = f_us.read()
in_date = f_in.read()
jp_date = f_jp.read()

us_date = us_date.replace("jsonp_1629344292311_69436(", "")
in_date = in_date.replace("jsonp_1629350745930_63180(", "")
jp_date = jp_date.replace("jsonp_1629350871167_29498(", "")

us_date = us_date[:-2]
in_date = in_date[:-2]
jp_date = jp_date[:-2]

us_dict = json.loads(us_date)
in_dict = json.loads(in_date)
jp_dict = json.loads(jp_date)

us_trend_date = us_dict["data"][0]["trend"]
us_x_date = us_trend_date["updateDate"][0:314]
us_y_date = us_trend_date["list"][0]["data"][0:314]

in_trend_date = in_dict["data"][0]["trend"]
in_x_date = in_trend_date["updateDate"][0:314]
in_y_date = in_trend_date["list"][0]["data"][0:314]

jp_trend_date = jp_dict["data"][0]["trend"]
jp_x_date = jp_trend_date["updateDate"][0:314]
jp_y_date = jp_trend_date["list"][0]["data"][0:314]

line = Line()
line.add_xaxis(us_x_date)
line.add_yaxis("美国确诊人数", us_y_date, label_opts=LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数", in_y_date, label_opts=LabelOpts(is_show=False))
line.add_yaxis("日本确诊人数", jp_y_date, label_opts=LabelOpts(is_show=False))
line.set_global_opts(
    title_opts=TitleOpts(title="全球疫情折线图", pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True, min_=1000, max_=20000000, range_text=["High", "Low"])

)

line.render("疫情折线图.html")

f_us.close()
f_in.close()
f_jp.close()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值