线性代数的本质(Essense of Linear Algebra)——3Blue1Brown

视频资料:https://www.bilibili.com/video/av6731067

一、向量是什么

  • 物理专业:向量是空间中的箭头,由长度和方向决定
  • 计算机专业:向量是有序的数字列表
  • 数学家:向量可以是任何东西,只要保证向量相加、数字与向量的相乘有意义即可

(1)当在坐标系下以有序多元数组的形式表示向量时,不同位置上的数字代表在相应坐标轴上的投影长度

(2)当把向量视作一种运动时,向量加法可以视为依次进行各个运动,即向量的首尾相连,反映到数值上,就是对应数值项的相加

(3)从几何角度看,向量数乘就是向量的缩放,反映到数值上,就是各个数值项都乘以标量

(4)线性代数的两种基本运算:向量加法和向量数乘

二、线性组合、张成的空间、基

(1)向量:基向量根据坐标值进行缩放并相加的结果  //用数字描述向量时,都依赖于当前采用的基

(2)线性组合(数乘和加法):两个数乘向量的和(二维)  $a\vec{v}+b\vec{w}$  //缩放再相加

注:线性的一种解释——当固定其中一个标量$a$时,让另一个标量$b$自由变化时,组合向量的终点会形成一条直线

(3)向量张成的空间:给定向量所有线性组合向量的集合

(4)线性相关:存在某向量可以表示为其他向量的线性组合 $\vec{u}=a\vec{v}+b\vec{w}$,即此向量落在其他向量张成的空间中,可以移除而不减小张成的空间

(5)线性无关:所有向量都给张成的空间添加新的维度

(6)基:向量空间的一组基是张成该空间的一个线性无关向量集

三、矩阵与线性变换

(1)变换与函数类似,接收输入,生成输出,变换隐含可以用运动的思想进行理解

注:此处变换接收一个向量,并输出一个向量,可以视为将输入向量移动到输出向量

(2)线性变换的特殊之处:变换保持网格线平行等距分布

  • 所有直线在变换后仍然保持为直线,不能有所弯曲
  • 原点位置必须保持固定

(3)线性变换只需要记录基向量$\hat{i}=\begin{bmatrix}1 \\ 0\end{bmatrix}$ 和 $\hat{j}=\begin{bmatrix}0 \\ 1\end{bmatrix}$ 变换后的位置   

注:线性变换由它对空间基向量的作用完全决定

(4)重要推论:因为线性变换网格线平行且等距分布,所以变换前后向量关于基向量的线性组合保持不变!

假设原始向量为$\begin{bmatrix}x \\ y\end{bmatrix}$,当基向量$\hat{i}=\begin{bmatrix}1 \\ 0\end{bmatrix}$和 $\hat{j}=\begin{bmatrix}0 \\ 1\end{bmatrix}$变为$\hat{i}=\begin{bmatrix}1 \\ -2\end{bmatrix}$和 $\hat{j}=\begin{bmatrix}3 \\ 0\end{bmatrix}$时,原始向量变为:

$$\begin{bmatrix}x \\ y\end{bmatrix} \rightarrow x\begin{bmatrix}1 \\ -2\end{bmatrix}+y\begin{bmatrix}3 \\ 0\end{bmatrix}=\begin{bmatrix}1x+3y \\ -2x+0y\end{bmatrix}=\begin{bmatrix}\color{red}1 & \color{red}3\\ \color{red}-\color{red}2 & \color{red}0\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}$$

可以看出,二维线性变换仅由四个数字完全确定,而这四个数字对应于基向量变换后的坐标

因此,可以看出矩阵就是对线性变换的一种描述,其中不同列表示不同基向量变换后的结果;矩阵的乘法视为变换后基向量的线性组合  //矩阵向量乘法用于计算线性变换作用于给定向量的结果

$$\begin{bmatrix}\color{red}a & \color{blue}b\\ \color{red}c & \color{blue}d\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}=x\begin{bmatrix}\color{red}a \\ \color{red}c \end{bmatrix}+y\begin{bmatrix} \color{blue}b\\  \color{blue}d\end{bmatrix}=\begin{bmatrix}{\color{red}ax }+\color{blue}by\\ {\color{red}cx}+\color{blue}dy\end{bmatrix}$$

注:矩阵代表对空间的一种特定线性变换

四、 矩阵乘法与线性变换复合

(1)矩阵乘法的几何意义:两个线性变换相继作用的合成  //独立变换的“复合变换”

(2)追踪基向量的变化:

$$\begin{bmatrix}\color{red}a & \color{red}b\\ \color{red}c & \color{red}d\end{bmatrix}\begin{bmatrix}\color{blue}e & \color{blue}f\\ \color{blue}g & \color{blue}h\end{bmatrix}=\begin{bmatrix}ae+bg & af+bh\\ ce+dg& cf+dh\end{bmatrix}$$

基向量$\hat{i}=\begin{bmatrix}1 \\ 0\end{bmatrix} \rightarrow \begin{bmatrix}e \\ g\end{bmatrix} \rightarrow \begin{bmatrix}\color{red}a & \color{red}b\\ \color{red}c & \color{red}d\end{bmatrix}\begin{bmatrix}e \\ g\end{bmatrix}=\begin{bmatrix}ae+bg\\ ce+dg\end{bmatrix}$

基向量$\hat{j}=\begin{bmatrix}0 \\ 1\end{bmatrix} \rightarrow \begin{bmatrix}f \\ h\end{bmatrix} \rightarrow \begin{bmatrix}\color{red}a & \color{red}b\\ \color{red}c & \color{red}d\end{bmatrix}\begin{bmatrix}f\\ h\end{bmatrix}=\begin{bmatrix}af+bh\\ cf+dh\end{bmatrix}$

(3)矩阵乘法不符合交换律,但满足结合律

附注1——三维空间中的线性变换:追踪三维基向量的变化  //三维方阵

五、行列式:线性变换改变面积的比例  //三维为体积的缩放

(1)含义(绝对值)

  • 给定区域面积增大或减小的比例  
  • 空间拉伸或挤压的程度
  • 单位正方形的面积变化比例

(2)矩阵行列式为0:对应变换将空间压缩到更低的维度  //列线性相关

(3)行列式的正负号:对空间定向orientation的改变,定向发生改变则为负

注:

  • 可根据基向量$\hat{i}$和$\hat{j}$进行考虑,$\hat{j}$位于$\hat{i}$左侧为正,$\hat{j}$位于$\hat{i}$右侧为负
  • 三维空间的定向:右手法则;如果变换后不符合右手法则,符合左手法则,则行列式为负

(4)计算行列式:$$det\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)=ad-bc$$  //二维方阵

 六、逆矩阵、列空间与零空间

(1)求解常系数线性方程组 $A\vec{x}=\vec{v}$

$$\begin{array}{c} 2x+5y+3z=-3\\4x+0y+8z=0\\1x+3y+0z=2\\\end{array} \rightarrow \begin{bmatrix}2 & 5 & 3\\4 & 0 & 8\\ 1 & 3 & 0\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}-3\\0\\2\end{bmatrix}$$

方程$A\vec{x}=\vec{v}$的几何含义:寻找向量$\vec{x}$,使得其经过变换$A$后得到向量$\vec{v}$

(2)行列式$det(A)\neq 0$时  //唯一解

有且仅有一个向量满足该变换$\vec{x}=A^{-1}\vec{v}$

此时存在逆变换$A^{-1}$,满足$A^{-1}A=I$(恒等变换) 

(3)行列式$det(A)=0$时

  • 有解的条件:向量$\vec{v}$位于变换后的低维空间内  //列空间

(4)列空间:变换后的基向量(矩阵的列)所能张成的空间 $A\vec{x}$  //解决“何时存在解”

  • 一定包含零向量

(5)秩rank:变换后的空间的维数  //列空间的维数

  • 满秩full rank:秩与列数相等;列空间的维数与输入空间的维数相等
  • 对于满秩矩阵而言,只有零向量在变换后仍落在原点处
  • 对于非满秩矩阵,存在多个向量变换后落在原点

(6)矩阵的零空间(核kernel):变换后落在原点的向量$\vec{x}$集合,即满足$A\vec{x}=\vec{0}$  //解决“解是什么样的”

附注2——非方阵

(1)$m\times n$矩阵:将$n$维向量变换为$m$维向量  //$m\neq n$时,基向量的维度发生变化

(2)矩阵的列数表明基向量的个数(输入空间的维数),矩阵的行数表明变换后输出空间的维数

 七、点积与对偶性  //点积:高维输入,一维输出

(1)$\vec{v}\cdot\vec{w}$标准定义:同维向量对应坐标项相乘后,求和

(2)$\vec{v}\cdot\vec{w}$几何解释:$\vec{v}$在$\vec{w}$方向上的投影长度和$\vec{w}$长度的乘积  //同向为正,反向为负,垂直为0

注:投影的对称性——点积的结果与顺序无关 $\vec{v}\vec{w}=\vec{w}\vec{v}$

(3)实现“高维输入,一维输出”的线性变换需要满足的直观条件:一系列等距分布于一条直线上的点,应用线性变换后,会保持这些点的等距分布特性;若干输出不是等距分布,则变换不是线性的

 注:一维行向量可以视为高维空间向一维空间的变换矩阵,每个元素可以看作基向量的变换结果,如$\begin{bmatrix}2 & 1\end{bmatrix}$

  • 点积与变换的关联:

  • 向量与变换之间的关系(直立和放倒

  • 投影矩阵projection matrix:二维向量到数的线性变换  //空间任意向量经过投影变换的结果为投影矩阵与向量相乘

  如图所示,$\hat{i}$和$\hat{j}$在单位向量$\hat{u}$上的投影值,分别为$u_x$和$u_y$(投影变换矩阵的值);则投影变换与点积的关系如下:

注:任何时候看到一个输出空间为一维数轴的线性变换,空间中会存在唯一的向量$v$与之相关,所以应用变换和与向量$v$做点积是一样的(对偶性duality)

  • 向量 $\Leftrightarrow$ 对应的线性变换  //向量是线性变换的物质载体
  • 多维空间到一维空间的线性变换 $\Leftrightarrow$ 多维空间的某个特定向量  //应用线性变换和与这个向量点乘等价

总结:

  • 点积是理解投影的有利几何工具,并便于检验两个向量的指向是否相同
  • 两个向量点乘:将其中一个向量转换为线性变换

 八、叉积

1. 标准介绍

(1)二维叉积(等价于行列式):

$\overrightarrow{v}\times\overrightarrow{w}$ = 构成的平行四边形的面积 * 方向($\overrightarrow{v}$在$\overrightarrow{w}$右侧为正,否则为负)  //乘积顺序有影响

注:

  • 判断方向的方法,记住横轴单位向量$\hat{i}$与纵轴单位向量$\hat{j}$的叉积$\hat{i}\times\hat{j}$为正  //基向量的顺序就是定向的基础
  • 面积的求法:将向量作为列构成矩阵(与将$\hat{i}$和$\hat{j}$分别移至$\overrightarrow{v}$和$\overrightarrow{w}$的线性变换相对应),矩阵行列式的绝对值即为面积  //作为行也可以,因为转置不改变行列式的值

(2)三维叉积:通过两个三维向量生成一个新的三维向量    $\overrightarrow{v}\times\overrightarrow{w}=\overrightarrow{p}$

  • 生成的三维向量:长度为平行四边形的面积,方向垂直于平行四边形,且符合右手法则

2. 以线性变换的眼光看叉积

(1)线性变换和对偶向量

(2)理解叉积的计算公式和几何含义之间的关系

  • 定义三维空间到数轴的函数:输入任意向量$(x, y, z)$计算与$\overrightarrow{v}$和$\overrightarrow{w}$确定的平行六面体的体积(考虑方向)

  注:根据行列式的性质可以证明该函数是线性的

  • 寻找对偶向量$\overrightarrow{p}$:线性变换$\Rightarrow$矩阵乘法$\Rightarrow$向量点积

  注:寻找向量$\overrightarrow{p}$,满足与向量$(x,y,z)$点乘时,所得结果为右侧$3\times 3$矩阵的行列式

$$\Downarrow$$

  注:计算公式角度

  • 向量$\overrightarrow{p}$点积的几何意义:
  • 六边体体积计算两种思考方式
  1. 线性函数对于给定向量的作用为:将向量投影到垂直于$\overrightarrow{v}$和$\overrightarrow{w}$的直线上,然后将投影长度与$\overrightarrow{v}$和$\overrightarrow{w}$张成的平行四边形的面积相乘  //对行列式的解释
  2. 等价于:垂直于$\overrightarrow{v}$和$\overrightarrow{w}$且长度为平行四边形面积的向量与向量$(x,y,z)$进行点乘  //对对偶向量点乘的解释

  注:几何意义角度

 九、基变换

(1)不同基向量(坐标系)下的坐标表示

注:当坐标均为$\begin{bmatrix}-1 \\ 2\end{bmatrix}$时,基向量的不同会引起在同一坐标系进行表示时的坐标变化

(2)基变换:矩阵代表基向量的变换

(3)基变换图示

  • 基变换矩阵(描述基变量的变化

  • 正变换

  • 逆变换

(4)如何利用标准坐标系描述新基下的线性变换

注:先将新基下的向量转化为标准坐标系表示——>在标准坐标系下进行变换——>将坐标重新变换回新基下的坐标

 

注:表达式$\color{red}{A^{-1}MA}$暗示了一种数学上的转移作用,中间的矩阵$M$代表了一种标准坐标系下的常见变换,外侧的两个矩阵则代表着不同坐标系的视角转化(转移作用),相应的矩阵乘积结果仍然代表着同一个变换,但是从其他人(新坐标系)的角度来看的

十、特征向量与特征值

(1)特征向量:矩阵变换对它的作用仅仅是拉伸或者压缩,如同一个标量  //特征向量留在自身张成的空间里(留在直线上,不发生旋转

(2)特征值:衡量特征向量在变换中拉伸或者压缩比例的因子

(3)对于三维旋转而言,旋转矩阵的特征向量代表了该旋转的旋转轴(不发生变化)  //旋转矩阵的特征值为1(保持向量长度不变)

(4)理解线性变换作用的两种方式

  • 将矩阵列视为变换后的基向量  //依赖于所选特定坐标系
  • 利用特征向量和特征值  //不依赖于坐标系

(5)求解特征向量、特征值

注:当且仅当矩阵$A-\lambda I$代表的变换将空间压缩到更低的维度时,才会存在非零向量$\vec{v}$,使得和矩阵的乘积为零,也就是矩阵的行列式需要为零

(6)二维线性变换不一定有特征向量:如逆时针旋转90度$\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}$使得每个向量都发生旋转(离开其张成的空间),此时求解行列式为零得不到实数解,表明没有特征向量

注:与虚数$i$相乘在复平面中表现为90度旋转(与$i$是上述旋转变换的特征值有关联);特征值出现复数的情况一般对应于变换中的某种旋转

(7)剪切变换矩阵$\begin{bmatrix}1 & 0 \\ 1 & 1\end{bmatrix}$的所有特征向量都位于$x$轴上,特征值为1

注:可能出现只有一个特征值,但是特征向量不止在一条直线上,如$\begin{bmatrix}2 & 0 \\ 0 & 2\end{bmatrix}$的唯一特征值为2,但是平面内每个向量都是特征向量

(8)特征基eigenbasis:一组特征向量作为基向量构成的集合

  • 对角矩阵的所有基向量都是特征向量,矩阵的对角元为相应的特征值  //对角矩阵仅仅让基向量与某个特征值相乘

  • 当基向量不是特征向量时,可以通过基变换,将坐标系转换为由特征向量作为基向量(特征向量足够多,能够张成全空间

  注:同一个变换在新基(特征向量)$\begin{bmatrix}1 & 0 \\ -1 & 1\end{bmatrix}$下表示为对角矩阵,且对角线元素为特征值

十一、抽象向量空间  //类似向量的事物合集,如箭头、一组数、函数等

(1)向量——>函数

  • 可加性

  • 成比例性

注:可加性和成比例性的直观解释——网格线保持平行且等距分布

  • 线性变换(矩阵)和线性算子(求导)之间的对应关系

  • 向量空间必须满足的八条公理

(2)全体多项式空间的基函数basis functions为:$b_0(x)=1, b_1(x)=x, b_2(x)=x^2, b_3(x)=x^3, \cdots$;

对每个基函数求导,并将结果作为矩阵列,可得函数的求导变换矩阵$\frac{d}{dx}$

(3)普适的代价

 

转载于:https://www.cnblogs.com/hg-love-dfc/p/10441586.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
About the Author David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. David Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has published more than 30 research articles on functional analysis and linear algebra. As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, David Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also a coauthor of several mathematics texts, including Introduction to Functional Analysis with Angus E. Taylor, Calculus and Its Applications, with L. J. Goldstein and D. I. Schneider, and Linear Algebra Gems–Assets for Undergraduate Mathematics, with D. Carlson, C. R. Johnson, and A. D. Porter. David Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar—Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America’s Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. David Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences. Steven R. Lay began his teaching career at Aurora University (Illinois) in 1971, after earning an M.A. and a Ph.D. in mathematics from the University of California at Los Angeles. His career in mathematics was interrupted for eight years while serving as a missionary in Japan. Upon his return to the States in 1998, he joined the mathematics faculty at Lee University (Tennessee) and has been there ever since. Since then he has supported his brother David in refining and expanding the scope of this popular linear algebra text, including writing most of Chapters 8 and 9. Steven is also the author of three college-level mathematics texts: Convex Sets and Their Applications, Analysis with an Introduction to Proof, and Principles of Algebra. In 1985, Steven received the Excellence in Teaching Award at Aurora University. He and David, and their father, Dr. L. Clark Lay, are all distinguished mathematicians, and in 1989 they jointly received the Outstanding Alumnus award from their alma mater, Aurora University. In 2006, Steven was honored to receive the Excellence in Scholarship Award at Lee University. He is a member of the American Mathematical Society, the Mathematics Association of America, and the Association of Christians in the Mathematical Sciences. Judi J. McDonald joins the authorship team after working closely with David on the fourth edition. She holds a B.Sc. in Mathematics from the University of Alberta, and an M.A. and Ph.D. from the University of Wisconsin. She is currently a professor at Washington State University. She has been an educator and research mathematician since the early 90s. She has more than 35 publications in linear algebra research journals. Several undergraduate and graduate students have written projects or theses on linear algebra under Judi’s supervision. She has also worked with the mathematics outreach project Math Central http://mathcentral.uregina.ca/ and continues to be passionate about mathematics education and outreach. Judi has received three teaching awards: two Inspiring Teaching awards at the University of Regina, and the Thomas Lutz College of Arts and Sciences Teaching Award at Washington State University. She has been an active member of the International Linear Algebra Society and the Association for Women in Mathematics throughout her career and has also been a member of the Canadian Mathematical Society, the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值