np\pd\plt模块

numpy模块

用于数据分析,对numpy数组(既有行又有列)——矩形进行科学运算

import numpy as np 
 # 创建numpy数组

arr1 = np.array([1,2,3])
arr2 = np.arrat([4,5,6])

print(arr1*arr2)
 # [4,10,18]
    
 # 二维数组
arr = np.array([
    [1,2,3],
    [4,5,6]
])
print(arr)

numpy数组的属性

import numpy as np 

arr = np.array([
    [1,2,3],
    [4,5,6]
])
# T 数组的转置(对高维数组而言) --> 行列互换,转置
print(arr,'\n,arr.T)
# size 数组元素的个数
print(arr.size) # 6
      
# shape 数组的维度大小(以元组形式)
print(arr.shape)    #(2,3)
      
# astpye 类型转换
arr = arr.astype(np.float64)
print(arr)
      
 
 

切片numpy数组

arr = np.array([
    [1,2,3],
    [4,5,6]
])
print(:,:) # 行,列
print(0,0) # 1

赋值

arr = np.array([
    [1,2,3],
    [4,5,6]
])


arr[0.0]=0
print(arr) # [[0 2 3] [4 5 6]]

逻辑取值

arr = np.array([
    [1,2,3],
    [4,5,6]
])

print(arr[arr>4]) # [5 6]

数组的合并

arr1 = np.array([
    [1,2,3],
    [4,5,6]
])
arr2 = np.array([
    [7,8,9],
    [a,b,c]
])
print(np.hstack((arr1,arr2))) # 只能放元组 行行进行拼接
print(np.vstack((arr1,arr2))) # 列与列进行拼接

print(np.concatenate((arr1,arr2),axis=1)) # 默认以列何并 0表示列,1表是行

通过函数创建numpy数组

print(np.ones((2,3)))

print(np.zeros((2,3)))

print(np.linspace(1,100,10))

arr1=np.zeros((1,12))
print(arr1.reshape((3,4)))  #重构形状

numpy数组数学和统计方法

arr = np.array([[1, 2, 3], [4, 5, 6], [9, 8, 9]])
print(np.sum(arr))  # 47

numpy.random生成随机数

np.radom.seed(1)
pint(np.random.random((3,4)))

matplotlib模块

画图

from matplotlib import pyplot as plt  # 约定俗成
from matplotlib.font_manager import FontProperties  # 修改字体

font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

plt.style.use('ggplot')  # 设置背景

clas = ['3班', '4班', '5班', '6班']
students = [50, 55, 45, 60]
clas_index = range(len(clas))

# [0,1,2,3] [50,55,45,60]
plt.bar(clas_index,students,color='darkblue')

plt.xlabel('学生',fontproperties=font)
plt.ylabel('学生人数',fontproperties=font)
plt.title('班级-学生人数',fontproperties=font,fontsize=20,fontweight=25)
plt.xticks(clas_index,clas,fontproperties=font)

plt.show()

pandas模块

import pandas as pd

np.random.seed(10)

index = pd.date_range('2019-01-01', periods=6, freq='M')
print(index)
columns = ['c1', 'c2', 'c3', 'c4']
print(columns)
val = np.random.randn(6, 4)
print(val)

df = pd.DataFrame(index=index, columns=columns, data=val)
print(df)

# 保存文件,读出成文件
df.to_excel('date_c.xlsx')

# 读出文件
df = pd.read_excel('date_c.xlsx', index_col=[0])
print(df)

# 按照index取值
# print(df['2019-01-31'])
print(df.loc['2019-01-31'])
print(df.loc['2019-01-31':'2019-05-31'])

# 按照values取值
print(df)
print(df.iloc[0, 0])

df.iloc[0, :] = 0
print(df)

转载于:https://www.cnblogs.com/hj59988326/p/11629034.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值