【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?

本文介绍了深度学习模型中偏差和方差的概念,探讨了神经网络的深度和节点数如何影响模型的性能,指出过少的隐藏层可能导致欠拟合(高偏差),而过多的隐藏层和神经元则可能造成过拟合(高方差)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        评估深度学习的模型的性能依旧可以用偏差和方差来衡量。它们反映了模型在预测过程中与理想情况的偏离程度,以及模型对数据扰动的敏感性。我们简单回顾一下什么是模型的偏差和方差?

一、深度学习模型的偏差和方差

  • 偏差:衡量模型预测结果的期望值与真实值之间的差异;
  • 方差:度量模型预测结果的变动性或离散程度;

如果模型在训练集上都表现得很差,就说模型高偏差(High Bias),此时模型欠拟合。

如果模型在验证集上表现很差在测试集上表现很好,就说模型高方差(High Variance),此时模型过拟合。

<
第一种情况 第二种情况 第三种情况 第四种情况
训练集误差 1%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值