一、函数的概念及常见函数
1.函数概念
定义:设x和y是两个变量,D是一个给定的非空数集,如果对于每个数x属于D,变量x按照一定的对应法则f总有一个确定的数值和它对应,则称y是x的函数,记为 y = f(x),x属于D
其中x称为自变量,y称为因变量,D称为函数的定义域,记作Df,即Df = D。
函数值f(x)的全体所构成的集合称为函数f的值域,记作Rf或f(D),即
注(1)函数有两个基本要素:定义域、对应规则(或称依赖关系),当两个函数的定义域与对应规则完全相同时,它们就是同一函数。
(2)要求函数的定义域,应记得:
sec x = 1/cos x 正割函数 csc x = 1/sin x 余割函数
2.分段函数
有些函数,对其定义域内自变量不同的取值,其对应法则不能用一个统一的数学表达式表示,而要用两个或两个以上的数学式子表示,这类函数称为分段函数。
例:符号函数
注 分段函数虽然用多个解析式表示,但是它是一个函数,而不是多个函数。
3.复合函数
4.反函数
反函数要求:x与y一一对应。
5.初等函数
第五点证明: