机器学习8:——Pandas——8:高级处理5:分组与聚合

一.高级处理-分组与聚合

学习目标

  • 目标
    • 应用groupby和聚合函数实现数据的分组与聚合
  • 应用
    • 星巴克零售店数据的分组与聚合

分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况

想一想其实刚才的交叉表与透视表也有分组的功能,所以算是分组的一种形式,只不过他们主要是计算次数或者计算比例!!看其中的效果:

在这里插入图片描述

1 什么是分组与聚合

在这里插入图片描述

2 分组API

  • DataFrame.groupby(key, as_index=False)
    • key:分组的列数据,可以多个
  • 案例:不同颜色的不同笔的价格数据
col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})

color    object    price1    price2
0    white    pen    5.56    4.75
1    red    pencil    4.20    4.12
2    green    pencil    1.30    1.60
3    red    ashtray    0.56    0.75
4    green    pen    2.75    3.15
  • 进行分组,对颜色分组,price进行聚合
# 分组,求平均值
col.groupby(['color'])['price1'].mean()
col['price1'].groupby(col['color']).mean()

color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

# 分组,数据的结构不变
col.groupby(['color'], as_index=False)['price1'].mean()

color    price1
0    green    2.025
1    red    2.380
2    white    5.560

二.案例实现

分组和聚合

In [124]:

col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})
col

Out[124]:

colorobjectprice1price2
0whitepen5.564.75
1redpencil4.204.12
2greenpencil1.301.60
3redashtray0.560.75
4greenpen2.753.15
  • groupby ([“xx”]) [“oo”].mean()
  • 把xx列的数据按照oo的平均值分组

In [125]:

col.groupby(["color"])["price1"].mean()

Out[125]:

color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

In [129]:

# 同上
col["price1"].groupby(col["color"]).mean()

Out[129]:

color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

In [130]:

# as_index = False  :可以把index的标题位置上移
col.groupby(["color"], as_index=False)["price1"].mean()

Out[130]:

colorprice1
0green2.025
1red2.380
2white5.560
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值