想象一下,你刚年过三十,体检还算正常。但其实在你看不见的“时间轴”上,某种慢性病正在悄然逼近,但你毫无察觉。
现在,有一个AI模型可以提前20年预测你未来患上癌症、免疫疾病等多达1258种疾病的可能性。
这不是噱头,而是Nature刚刚报道的一项来自德国癌症研究中心的成果。
科学家们开发了一个名为 Delphi-2M 的人工智能工具。它能够基于你的健康记录和生活方式,一次性预测你未来患上超过1000种疾病(包括癌症、皮肤病、免疫系统疾病等)的可能性,有些预测甚至可以提前整整20年!
AI健康“神谕”:从“单点预测”到“全景扫描”的革命
在过去,用AI预测疾病风险并不新鲜:我们已经有模型能预测个体罹患乳腺癌、心脏病、糖尿病的概率。
但它们都有一个共同的局限:一次通常只能预测一种疾病。
这意味着什么呢?研究的共同作者、数据科学家 Moritz Gerstung 博士评价:“一名医疗保健专业人员,可能需要手忙脚乱地运行几十个不同的模型,才能给出一个相对全面的健康评估。”
不仅效率低下,而且无法捕捉到不同疾病之间可能的关联性。
Delphi-2M 的出现,改变了这一局面。它最重要的突破,就是能够“一次性”对上千种疾病的风险进行综合建模。德国慕尼黑大学的计算机科学家 Stefan Feuerriegel 教授在评价这项工作时,用了“astonishing”(惊人)这个词:“Delphi-2M 能够预测完整的未来健康轨迹。”
就像我们从前用单筒望远镜,一次只能观测一颗星星;而现在,Delphi-2M 给我们换上了一台能俯瞰整个星空的哈勃望远镜,让我们能够获得一份前所未有的“全景式”个人健康风险报告。
背后功臣:当GPT大语言模型“转行”学医
这个强大的“AI健康算命师”是如何炼成的呢?它的技术基座正是我们非常熟悉的 GPT大语言模型。
研究团队巧妙地改造了GPT模型,让它学习的不再是人类的语言文字,而是人类的“健康语言”——长期的医疗记录。他们将模型的目标从“根据上文预测下一个最可能的词语”,调整为“根据过去的健康史,预测未来最可能发生的疾病”。
为了训练这个模型,研究人员使用了来自“英国生物银行(UK Biobank)”的40万名参与者的海量健康数据。这些数据不仅包括详细的医疗记录,还涵盖了年龄、性别、体重指数(BMI)以及吸烟、饮酒等生活习惯。
结果如何呢?Delphi-2M 的表现“惊人地好”。在绝大多数疾病的预测上,它的准确性都达到甚至超过了现有的单病种预测模型。
更值得一提的是,它还轻松击败了另一种依赖生物标志物来进行多疾病预测的机器学习算法。尤其是在预测那些具有明确发展轨迹的疾病(如某些类型的癌症)时,Delphi-2M 的表现尤为出色。
跨国“大考”与未来的挑战
一个在英国数据上训练出来的模型,换个环境还好用吗?为了验证其普适性,研究团队用来自丹麦国家患者登记处的190万人的健康数据对 Delphi-2M 进行了测试。这是一个追踪了丹麦人近半个世纪住院记录的超大型国家数据库。
结果令人振奋:尽管 Delphi-2M 在丹麦人群中的预测准确率略有下降,但其预测结果在很大程度上仍然是可靠的。这初步证明了该模型具备跨地域、跨卫生系统应用的潜力。
当然,作为一项开创性的研究,Delphi-2M 并非完美无缺。德克萨斯大学休斯顿健康科学中心的生物信息学专家 Degui Zhi 教授就指出了它的一个局限:UK Biobank 的数据通常只记录了参与者首次患上某种疾病的情况,而一个人患病的次数和频率对于精准描绘其健康轨迹至关重要。
Gerstung 博士和他的团队也清醒地认识到了这一点。他们下一步的计划,就是利用更多国家的健康数据集来持续优化和验证 Delphi-2M,致力于开发出更精准、更具普适性的算法。
娜姐说:
AI 正在重塑医学的边界。Delphi-2M 的诞生,预示着从“亡羊补牢”式的疾病治疗,迈向“未雨绸缪”式的精准预防医学的新时代。
对于临床医生而言,这样的工具未来可能成为强大的“预警系统”,帮助他们及早识别高风险人群,并提前采取干预措施。对于公共卫生决策者而言,它可以为资源分配和疾病防控策略的制定提供前所未有的数据支持。
对于科研人员,尤其是从事生物信息学、临床医学和数据科学研究相关,这项工作展示了将大语言模型应用于医疗健康数据的巨大潜力:我们如何获取和整合更高质量的多维度健康数据?如何让模型变得更可解释、更公平?如何将这些预测结果有效地转化为临床实践?
--
今天就介绍到这。如果觉得有用,欢迎在看、转发和点赞,一键三连!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。