嘴型同步模型Wav2Lip

软硬件环境是

  • ubuntu 18.04 64bit

  • nvidia gtx 1070Ti

  • cuda 11

  • anaconda with python 3.7

简介

2020年,来自印度海德拉巴大学和英国巴斯大学的团队,在ACM MM2020发表了的一篇论文《A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild 》,在文章中,他们提出一个叫做Wav2LipAI模型,只需要一段人物视频和一段目标语音,就能够让音频和视频合二为一,人物嘴型与音频完全匹配。

快速体验

可以先到作者提供的体验站体验一番,地址是:https://bhaasha.iiit.ac.in/lipsync/example3/

wav2lip

按照上图中的选择视频和音频上传即可同步。

实践

准备环境

首先使用conda创建新的虚拟环境,然后激活这个环境

conda create -n lip python=3.7
conda activate lip

接着来到官方网站,使用git克隆代码,或者直接下载源码压缩包解压,安装依赖

git clone https://github.com/Rudrabha/Wav2Lip.git
pip install -r requirements.txt

windows平台上,使用了阿里云的pip源,发现找不到torch 1.1的版本,后来使用了最新稳定版1.7也没有问题,其它依赖库使用最新版也是ok的。

接下来需要安装ffmpeg,这是音视频处理的神器,ubuntu版本使用apt安装

sudo apt install ffmpeg

windows用户的话,可以到 https://github.com/BtbN/FFmpeg-Builds/releases 下载,解压后将bin对应的路径添加到系统环境变量PATH中。

准备素材

下面开始准备素材,我们把官方体验站上的测试视频下载下来,使用下面的命令

wget --no-check-certificate https://bhaasha.iiit.ac.in/lipsync/static/samples/game.mp4

这个测试视频只有3秒,那接下来就去找个对应3秒的音频。如果能有现成的音频文件最好,如果没有的话,我的做法是这样的,从某个视频文件中提取音频,然后进行裁剪,这里需要的时长是三秒。这两步会使用到ffmpeg这个工具

# 视频裁剪,从第10秒开始,总时长是3秒,目标视频的音视频编码格式与原始的保持一致
ffmpeg -ss 00:00:10 -t 00:00:03 -i input.mp4 -vcodec copy -acodec copy test.mp4

# 从视频中提取音频
ffmpeg -i test.mp4 -vn test.mp3

准备模型文件

第一个需要的模型是脸部检测预训练模型,下载地址是:https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth,下载后放到目录face_detection/detection/sfd中,并重命名为s3fd.pth。脸部模型主要

接下来去下载模型文件,这里作者提供了3个,可以任选一个,后两个优于第一个。它们的区别如下表所示,本文使用的是Wav2Lip + GAN,下载地址:https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA?e=n9ljGW ,下载后放在项目根目录

wav2lip

运行代码

执行下面的命令将视频test.mp4和音频3s.mp3进行合成

python inference.py --checkpoint_path wav2lip_gan.pth --face test.mp4 --audio 3s.mp3

最后,生成的新视频文件保存在results/result_voice.mp4,生成的中间文件存放在temp下,像单独处理后的音频temp.wav、视频result.avi等。

FAQ

ValueError: Face not detected! Ensure the video contains a face in all the frames.

这个一般是由于片头或者片尾没有脸,解决方法也很简单,使用ffmpeg或者剪辑软件,将片头或片尾相应的帧剪掉就可以了

备注

项目作者强调,基于此开放源代码的所有结果仅应用于学术研究和个人目的,由于模型是基于LRS2 (Lip Reading Sentences 2) 数据集进行训练,因此严禁任何形式的商业用途。

资源下载

打包了文中所使用的模型文件,下载地址:

链接:https://pan.baidu.com/s/14r8Ow46GnmFohS2eC3NHYA
提取码:4ykb

参考资料

  • http://arxiv.org/abs/2008.10010

  • https://github.com/Rudrabha/Wav2Lip

  • http://bhaasha.iiit.ac.in/lipsync/

  • https://github.com/1adrianb/face-alignment

  • https://xugaoxiang.com/2020/09/29/ffmpeg-cmd/

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷途小书童的Note

请博主喝矿泉书!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值