锯齿波的傅里叶变换_奇妙的傅里叶矩阵之 e^ikt

函数或者信号在各个领域都是被人们广泛研究的课题。而傅里叶级数从时域和频域两个角度对信号进行研究和计算,无论在理论上或者实践中都有重要的意义和价值,很多人都在学习和研究这个理论。

a728bf6f2a7dc162ed2179bdf671f523.png

图1所示为一个下锯齿形信号,右面的时域图表示随时间变化的信号波形。其中坐标横轴为时间 t 轴。我们采用离散型函数的研究方法,选取一个周期T的时间作为研究区间,确定一个样本点数N等分周期T,坐标竖轴小x表示出对应于各个时刻 0,T/N, 2T/N,.....nT/N.....(N-1)T/N的信号的振幅值。

左面的频域图则把这个信号看作不同频率三角函数谐波的叠加。坐标横轴为频率 f 轴,0表示信号常量,1/T为基波(与信号本身同频率),2/T为二次谐波......k/T为k次谐波,谐波频率依次递增。坐标竖轴大X表示对应各次谐波的振幅峰值,也就是数学式中各次谐波前面的系数。对于下锯齿形信号,常量部分为1;基波为1.4,强度最大;高频部分渐弱。

离散傅里叶变换(DFT)和逆变换(IDFT)用下面两个数学式表示。

DFT

=
(0
k
N-1)

IDFT

=
(0
n
N-1)

本文规定

=e^i
(有些文章规定
=e^-i
),N为样本点数,k为谐波次数,n表示时刻。这个式子简单明了,但比较抽象。本文采用线性代数里向量,基与坐标,矩阵等概念,力求问题阐述简单易懂。

在线性代数里可以用向量来表示函数或者信号。所谓向量就是n个有次序的数所组成的数组,例如下锯齿形信号在一个周期里的表示,可以用小x的顺序排列实现,[0,0,0,0,-

,-3/4
,-1/2
,-1/4
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值