三种市盈率和环比及TTM计算法

    市盈率有静态市盈率、滚动市盈率和动态市盈率,怎么计算呢?

    首先需要明确的是,市盈率是按照一年这样的时间单位进行计算的,这样可以与银行的利率(银行的市盈率倒数)相比较。

    现以000651格力电器为例:

    格力电器2009年EPS为1.55元,当时(指年初)总股本为18.7859亿,而目前总股本为28.1789亿,2009年EPS就变为1.55×(18.7859/28.1789)=1.0333元;

    又知道,2010年前三季度净利润为28.9007亿元,2009年第四季度净利润为9.2156亿元,(这两个数据如果偷懒不想查报表的话,可以通过“炒股软件>F10>财务分析>主要财务指标和环比分析”得到),前四个季度的净利润为9.2156+28.9007=38.1163亿元,那么滚动EPS=净利润/总股本=38.1163/28.1789=1.3526元;

    现在已知2010年前三季度净利润为28.9007亿元,而2010年年报还没有出来,所以不知道2010年全年的净利润,可以这样推算为28.9007/前三季度3=X/4(即全年共四个季度),X=38.5343亿元,那么动态EPS=净利润/总股本=38.5343/28.1789=1.3675元;

    今天的股价为18.13元,那么:

    静态市盈率计算为:股价/EPS=18.13/1.0333=17.55倍

    滚动市盈率计算为:股价/滚动EPS=18.13/1.3526=13.40倍

    动态市盈率计算为:股价/动态EPS=18.13/1.3675=13.26倍

    因为2010年的EPS和滚动EPS都是通过已经发布的财务报表计算得到的,所以是确定可信的,那么由此得到的静态市盈率和滚动市盈率就是确定可信的(除非财务报表做假),而动态EPS是仅仅根据已发布的三季报推算全年的净利润计算所得(如果在第一季度时想推算动态市盈率就使用一季报推算全年净利润计算出动态EPS;如果在第二季度时想推算动态市盈率就使用半年报推算全年净利润计算出动态EPS),而推算数据本身就是一个不可靠的数值,所以动态市盈率也就值得怀疑,这里有三种情况可能会发生:

    第一种情况:如果2010年报发布,格力电器全年净利润为38.5343亿元,那么先前推算出来的动态EPS和动态市盈率是可信的;

    第二种情况:如果2010年报发布,格力电器全年净利润低于38.5343亿元,比如为35.0亿元,那么先前推算出来的动态EPS和动态市盈率就是令人可笑的了,这时动态EPS=净利润/总股本=35.0/28.1789=1.2421元,动态市盈率=股价/动态EPS=18.13/1.2421=14.60倍,和先前计算出的13.26倍有误差了。

    第三种情况:如果2010年报发布,格力电器全年净利润高于38.5343亿元,比如为40.0亿元,那么先前推算出来的动态EPS和动态市盈率也是令人可笑的了,这时动态EPS=净利润/总股本=40.0/28.1789=1.4195元,动态市盈率=股价/动态EPS=18.13/1.4195=12.77倍,和先前计算出的13.26倍有误差了。

    由此可见,动态市盈率是不可信的,现在交易所和炒股软件都是仅提供动态市盈率,实在是误人子弟,投资者不可不查,慎之又慎!

    结论:尽量使用静态市盈率和滚动市盈率判断股价便宜与否,不要使用动态市盈率。

 

    友情提示:为了环比和TTM分析,需要计算上市公司每个季度的净利润。

    仍以格力电器为例:

    2009年三季报提供格力电器2009年1-9月净利润19.91亿元和2009年7-9月净利润7.60亿元;

    2009年年报提供格力电器2009年1-12月净利润29.13亿元;

    2010年一季报提供格力电器2010年1-3月净利润6.39亿元;

    2010年半年报提供格力电器2010年1-6月净利润15.72亿元;

    2010年三季报提供格力电器2010年1-9月净利润28.90亿元和2010年7-9月净利润13.17亿元;

    那么:

    2009年三季度(7-9月)净利润为7.60亿元;

    2009年四季度(10-12月)净利润为2009年年报净利润29.13亿元减去2009年三季报净利润19.91亿元=9.22亿元;

    2010年一季度(1-3月)净利润为6.39亿元;

    2010年二季度(4-6月)净利润为2010年半年报净利润15.72亿元减去2010年一季报净利润6.39亿元=9.33亿元;

    2010年三季度(7-9月)净利润为13.17亿元;

    列示如下:

 季度    2009年三季度  2009年四季度  2010年一季度  2010年二季度   2010年三季度

净利润      7.60亿              9.22亿              6.39亿             9.33亿              13.17亿

    这样就可以进行环比分析,比如2010年一季度净利润比2009年四季度要少,而2010年二季度净利润要比一季度要多,这说明格力电器主营产品空调有季节性淡季和旺季之分,从上面的季度净利润数据初步可以看出,每年的第一季度为空调的淡季,所以净利润不是很高,而二季度开始进入旺季。

    为了剔除由于季节性淡季和旺季对企业净利润增长的误判,也为了与国际接轨(国外有的公司,它的财务结算年度有的是从第四季度开始起计,结算到次年的第三季度为止,所以引入TTM概念,TTM((Trailing Twelve Months)的含义就是最近12个月(也可以理解为最近四个季度)。

     那么TTM怎样计算呢?顾名思义,比如2010年第二季度的TTM数据就是将 2009年三季度、2009年四季度、2010年一季度、2010年二季度这四个净利润数据相加再除以4,同理,2010年第三季度的TTM数据就是将 2009年四季度、2010年一季度、2010年二季度、2010年三季度这四个净利润数据相加再除以4,计算结果如下表:

    季度        2010年二季度   2010年三季度

  净利润(TTM)     8.135         9.5275

  现在使用TTM数据进行各季度净利润增长情况的分析就基本剔除了季节性淡季和旺季的因素,因而比较客观合理。

 

转载自:

http://blog.sina.com.cn/s/blog_62b2adbe0100oisb.html

<think>嗯,用户想了解如何使用AkShare获取每日市盈率的数据。首先,我需要回忆一下AkShare的文档相关函数。记得AkShare是一个金融数据接口库,提供各种市场数据。市盈率数据可能属于股票基本面数据,可能需要查找对应的API函数。 然后,用户需要的是每日市盈率,所以应该关注每日更新的数据。AkShare中可能有一个函数,比如stock_zh_a_pe()或者类似的名称。需要确认这个函数是否存在,参数是什么。比如是否要指定股票代码,或者是否支持获取整个市场的市盈率数据。 接下来,用户可能需要示例代码。我需要构造一个简单的Python脚本,展示如何调用这个函数,处理返回的数据,比如转换为DataFrame,处理日期格式,保存到Excel或CSV。同时,可能还需要处理一些常见问题,比如数据更新频率、字段含义的解释。 另外,用户可能不太清楚如何安装导入AkShare,所以在教程中应该包含安装步骤,比如pip install akshare --upgrade。还要注意网络问题,可能需要设置重试机制或代理。 还要考虑用户可能的进阶需求,比如数据可视化或指标计算,可以建议使用pandasmatplotlib进行简单的绘图,或者结合其他库进行数据分析,比如计算移动平均线。同时,引用站内的相关资源,比如金融数据处理或策略回测的内容,帮助用户进一步应用数据。 最后,确保代码符合Python最佳实践,比如使用try-except处理异常,添加注释说明每一步的作用。检查是否有过时的API,因为AkShare有时会更新接口,需要确认函数名参数是否正确。如果有不确定的地方,建议用户查阅官方文档或社区支持。</think>### 使用 AkShare 获取每日市盈率数据教程 #### 1. 安装 AkShare 首先确保已安装最新版 AkShare: ```bash pip install akshare --upgrade ``` #### 2. 获取沪深 A 股市盈率数据 使用 `stock_a_pe` 函数获取全市场市盈率数据(含静态动态市盈率): ```python import akshare as ak # 获取最新交易日数据 pe_df = ak.stock_a_pe() print(pe_df.head()) # 输出字段说明: # 日期 date | 静态市盈率 pe_ttm | 动态市盈率 pe_lyr | 股票代码 symbol(空值表示全市场均值) ``` #### 3. 获取单只股票历史市盈率 通过 `stock_zh_a_hist` 获取历史数据(含市盈率字段): ```python # 示例:获取贵州茅台(600519)历史数据 stock_hist = ak.stock_zh_a_hist(symbol="600519", period="daily", adjust="hfq") # 提取市盈率字段 pe_ratio = stock_hist[['日期', '市盈率']] print(pe_ratio.tail()) ``` #### 4. 数据存储与可视化 ```python # 保存到 Excel pe_df.to_excel("stock_pe.xlsx", index=False) # 绘制市盈率走势图 import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) plt.plot(pd.to_datetime(pe_df['日期']), pe_df['pe_ttm'], label='全市场静态市盈率') plt.title('沪深A股市盈率趋势') plt.legend() plt.show() ``` #### 注意事项: 1. 数据更新频率:每日收盘后更新(约 18:00) 2. 网络问题处理建议: ```python import requests session = requests.Session() session.verify = False # 关闭 SSL 验证(如遇证书错误) pe_df = ak.stock_a_pe(session=session) ``` 3. 字段异常处理:部分新上市股票可能暂无比率数据[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值