步骤 1:导入OpenCV库
在项目中导入OpenCV库,你可以在Maven或Gradle中添加相应的依赖。这里以Maven为例:
<dependency>
<groupId>org.openpnp</groupId>
<artifactId>opencv</artifactId>
<version>4.5.2-1</version>
</dependency>
步骤 2:实现人脸检测和替换
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfInt4;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.imgproc.Imgproc;
import org.opencv.core.CvType;
import org.opencv.core.CvType.CV_8UC3;
import javax.imageio.ImageIO;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.IOException;
public class FaceSwap {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
String imagePath = "path/to/your/image.jpg";
String faceImagePath = "path/to/your/face_image.jpg";
Mat image = Imgcodecs.imread(imagePath);
Mat faceImage = Imgcodecs.imread(faceImagePath);
Mat result = swapFaces(image, faceImage);
displayImage(matToBufferedImage(result), "Face Swap Result");
}
public static Mat swapFaces(Mat image, Mat faceImage) {
CascadeClassifier faceDetector = new CascadeClassifier("haarcascades/haarcascade_frontalface_default.xml");
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
for (Rect rect : faceDetections.toArray()) {
Mat faceROI = new Mat(faceImage.size(), CvType.CV_8UC3);
Imgproc.resize(faceImage, faceROI, new Size(rect.width, rect.height));
int x = rect.x;
int y = rect.y;
int width = rect.width;
int height = rect.height;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
double[] pixel = faceROI.get(i, j);
image.put(y + i, x + j, pixel);
}
}
}
return image;
}
public static void displayImage(Image img, String title) {
ImageIcon icon = new ImageIcon(img);
JFrame frame = new JFrame();
frame.setLayout(new FlowLayout());
frame.setSize(img.getWidth(null) + 50, img.getHeight(null) + 50);
JLabel lbl = new JLabel();
lbl.setIcon(icon);
frame.add(lbl);
frame.setTitle(title);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
}
public static BufferedImage matToBufferedImage(Mat matrix) {
int cols = matrix.cols();
int rows = matrix.rows();
int elemSize = (int) matrix.elemSize();
byte[] data = new byte[cols * rows * elemSize];
int type;
matrix.get(0, 0, data);
switch (matrix.channels()) {
case 1:
type = BufferedImage.TYPE_BYTE_GRAY;
break;
case 3:
type = BufferedImage.TYPE_3BYTE_BGR;
byte b;
for (int i = 0; i < data.length; i = i + 3) {
b = data[i];
data[i] = data[i + 2];
data[i + 2] = b;
}
break;
default:
return null;
}
BufferedImage image = new BufferedImage(cols, rows, type);
image.getRaster().setDataElements(0, 0, cols, rows, data);
return image;
}
}
请替换imagePath
和faceImagePath
为你实际的图像路径。上述代码使用了OpenCV的Haar级联分类器进行人脸检测,并简单地替换掉检测到的人脸部分。