VisoMaster可以说是Rope的升级版,如果你熟悉Rope,上手VisoMaster将毫无难度。它是一款功能强大且简单易用的工具,专为图片和视频中的脸部替换与编辑设计。借助人工智能技术,VisoMaster能以最少的操作生成自然流畅的效果,无论是普通用户还是专业人士,它都是释放创意潜能的理想选择。
功能特点
🔄 脸部替换功能
- 多模型支持:兼容多种脸部替换器模型,满足不同需求。
- DFM兼容:无缝对接DeepFaceLab训练模型(DFM),提升专业性。
- 多脸交换:支持同时处理多张脸,每张脸可独立设置遮罩。
- 遮挡掩蔽:采用DFL XSeg Masking技术,确保复杂场景下的精准处理。
- 检测器适配:兼容主流人脸检测器和地标检测器,使用灵活。
- 表情恢复:智能转移原始表情,保持脸部替换后的自然生动。
- 面部修复:集成流行升级和增强模型,优化细节效果。
🎭 面部编辑器(LivePortrait模型)
- 表情与姿势调整:手动微调面部表情和姿势,打造个性化效果。
- 色彩微调:通过RGB调整功能,精细控制脸部、头发、眉毛和嘴唇的颜色。
🚀 其他强大功能
- 实时回放:保存前即可预览处理后的视频,确保满意再输出。
- 人脸嵌入:支持多个源人脸,提升脸部替换的准确度和相似度。
- 实时脸部替换:通过网络摄像头实现实时交换,可流式传输至Twitch、YouTube、Zoom等平台。
- 用户友好界面:操作直观,学习成本低。
- 视频标记:支持逐帧调整设置,确保每帧效果最佳。
- TensorRT加速:利用Nvidia GPU实现超快速处理,效率翻倍。
使用前提
- 操作系统:Windows 10 或 Windows 11。
- 硬件要求:配备8GB及以上显存的Nvidia GPU,并且安装了CUDA 12.4或者以上版本,查看本地是否安装CUDA也很简单,cmd命令行输入nvcc -V,会出现下图的cuda版本,如果没有显示,则可以去https://www.zhisk.com/1154.html安装对应的cuda版本
快速上手:一键整合包
为了让用户快速体验VisoMaster,我们提供了一键整合包。底部名片发送vm即可获取下载链接。下载后解压并一键启动,轻松开启你的脸部替换之旅。
本地部署指南
如果你更倾向于手动本地部署VisoMaster,以下是详细步骤。注意:手动本地安装可能因依赖下载问题而耗时费力,请确保网络稳定。
- 准备环境:
- 下载并安装 Anaconda 用于虚拟环境管理。
-
克隆项目: git clone https://github.com/visomaster/VisoMaster.git cd VisoMaster 创建并激活Conda环境: conda create -n visomaster python=3.10.13 -y conda activate visomaster 安装CUDA和cuDNN: conda install -c nvidia/label/cuda-12.4.1 cuda-runtime conda install -c conda-forge cudnn 安装其他依赖项: conda install scikit-image pip install -r requirements_cu124.txt 下载模型: python download_models.py 运行程序: python main.py
常见问题解答
如何进行图片脸部替换?
- 打开VisoMaster,选择目标人脸文件夹,就是你要脸部替换的图片所在文件夹
- 选择输入人脸文件夹,就是你要替代上去的人脸图片所在文件夹
- 选择目标人脸,查找面部
- 选择需要替换的人脸
- 交换面部
如何进行视频脸部替换?
同图片脸部替换一样,只需要选择视频所在文件夹。需要注意的就是下图标注的几个序号,
①如果要输入脸部替换后的视频,需要在设置里选择需要输出的文件夹。
②这个是录制按钮,点击了就会输出到输出目录
③预览按钮,不会输出到输出目录,一般先预览在再录制。
如何进行实时脸部替换?
- 连接网络摄像头,确保设备正常运行。
- 在VisoMaster中界面中,选择目标视频/图像位置勾选摄像头即可
如何支持DFM模型脸部替换?
- 自己训练好DeepFaceLab模型(DFM)或者从网上下载的DFM模型。
- 放到软件的目录下,路径在图片上。
- 软件中选择交换模式为DFM,选择对应的dfm模型名。具体操作顺序如下图 【原图】
如何脸部替换的时候同时编辑面部表情&姿势?
同图片视频脸部替换一样,再点击编辑面部即可,下图是在已经完成脸部替换的步骤下进行