深度学习保姆级入门教程 -- 论文+代码+常用工具

本文为软件工程背景读者提供深度学习入门路径,涵盖Python学习资源、核心论文、必备书籍及PyTorch使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读

该篇文章可以看作是我研一如何入门深度学习的一个大总结,本人本科专业为软件工程,硕士期间研究方向为基于深度学习的图像分割,跨度相对而言不算太大。如果你对如何入门深度学习还很迷茫的话,那么请看下去吧。

在这里插入图片描述

一、Python的学习

虽然是深度学习入门教程,但是Python的学习是必不可少的,一套完整神经网络代码是由Python串起来的,网络结构部分主要是靠PyTorch实现。关于Python的入门学习,强烈推荐小甲鱼的免费Python视频教程,U1S1,这个教程是真的牛13,将的非常全面,比网络上大多数的教程讲述的都要详细!

小甲鱼Python教程:0基础入门Python
小甲鱼官方网站:https://fishc.com.cn/

二、必读入门论文

建议按照顺序依次往下看:

  1. LeNet:https://ieeexplore.ieee.org/abstract/document/726791

  2. AlexNet:https://kr.nvidia.com/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
    在这里插入图片描述

  3. VGGNet:https://arxiv.org/abs/1409.1556
    在这里插入图片描述

  4. GoogLeNet:GoogLeNet论文链接
    在这里插入图片描述

  5. ResNet:ResNet论文链接
    在这里插入图片描述

  6. Batch Normalization:http://proceedings.mlr.press/v37/ioffe15.html
    在这里插入图片描述

  7. Dropout:Dropout论文链接
    在这里插入图片描述

  8. DenseNet:DenseNet论文链接
    在这里插入图片描述

  9. NiN:https://arxiv.org/abs/1312.4400
    在这里插入图片描述

  10. Xception: Xception论文链接
    在这里插入图片描述

基础必看论文仔细阅读完、做好笔记之后,可以根据自己的兴趣阅读自己感兴趣的方向,现在深度学习比较火的方向无非就是三个,第一个是图像分类,第二个是图像分割,第三个是目标检测,其中目标检测是大热!

三、必看书籍

深度学习入门级的书籍很多,但个人觉得还是以下这四本最适合新手。尤其是《深度学习入门–基于Python的理论与实现》这本书,强烈建议购入!不是恰饭!

《统计学习方法》-- 个人觉得李航老师的统计学习方法比西瓜书更加适合入门
《机器学习》-- 大名鼎鼎的西瓜书
《南瓜书》-- 推导与解释《西瓜书》中晦涩难懂的公式
《深度学习入门–基于Python的理论与实现》-- 这本书真的是宝藏,太简单易懂了,直接爱了!强烈推荐!

链接:四本书全套

四、PyTorch的学习

五、用到的Python第三方库

  • tqdm
  • Visdom
  • Numpy
  • Pillow
  • argparse
  • math
  • os

六、常用软件工具

七、神经网络画图软件

觉得写的不错的话,欢迎点赞+评论+收藏,关注我的公众号,这对我帮助真的很大很大很大!

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个专注于医学图像处理领域前沿科技的公众号。坚持以实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。更有上百部深度学习入门资料免费等你来拿,只有实践才能成长的更快,关注我们,一起学习进步~

精品深度学习基础系列文章

在这里插入图片描述

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾狗PhD

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值