微积分(一)

求导的定义

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导 或者可微分。可导的函数一定连续。不连续的函数一定不可导。

定义法求导

定义式

f ′ ( x ) = d y d x = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\frac{dy}{dx}=\lim_{h\to0}\frac{f(x+h)-f(x)}{h} f(x)=dxdy=h0limhf(x+h)f(x)

例一

题目

f ( x ) = x f(x)=\sqrt x f(x)=x 的导数

解答

f ′ ( x ) = d y d x = lim ⁡ h → 0 x + h − x h = lim ⁡ h → 0 ( x + h − x ) ( x + h + x ) h ( x + h + x ) = lim ⁡ h → 0 x + h − x h ( x + h + x ) = lim ⁡ h → 0 1 x + h + x = 1 2 x \begin{align} f'(x)=\frac{dy}{dx}&=\lim_{h\to0}\frac{\sqrt{x+h}-\sqrt x}{h}\\ &=\lim_{h\to0}\frac{(\sqrt{x+h}-\sqrt x)(\sqrt{x+h}+\sqrt x)}{h(\sqrt{x+h}+\sqrt x)}\\ &=\lim_{h\to0}\frac{x+h-x}{h(\sqrt{x+h}+\sqrt x)}\\ &=\lim_{h\to0}\frac1{\sqrt{x+h}+\sqrt x}\\ &=\frac 1{2\sqrt x} \end{align} f(x)=dxdy=h0limhx+h x =h0limh(x+h +x )(x+h x )(x+h +x )=h0limh(x+h +x )x+hx=h0limx+h +x 1=2x 1

例二

题目

f ( x ) = 1 x f(x)=\frac1x f(x)=x1的导数

解答

f ′ ( x ) = d y d x = lim ⁡ h → 0 1 x + h − 1 x h = lim ⁡ h → 0 − h x ( x + h ) h = − lim ⁡ h → 0 1 x ( x + h ) = − 1 x 2 \begin{align} f'(x)=\frac{dy}{dx}&=\lim_{h\to0}\frac{\frac1{x+h}-\frac1x}{h}\\ &=\lim_{h\to0}\frac{-\frac{h}{x(x+h)}}{h}\\ &=-\lim_{h\to0}\frac1{x(x+h)}\\ &=-\frac1{x^2} \end{align} f(x)=dxdy=h0limhx+h1x1=h0limhx(x+h)h=h0limx(x+h)1=x21

多项式求导公式

f ( x ) = x a f(x)=x^a f(x)=xa f ′ ( x ) = a x a − 1 f'(x)=ax^{a-1} f(x)=axa1

求导运算公式求导

和法则

[ f ( x ) + g ( x ) ] ′ = f ( x ) ′ + g ( x ) ′ d y d x = d ( u + v ) d x = d u d x + d v d x [f(x)+g(x)]'=f(x)'+g(x)'\\ \frac{dy}{dx}=\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx} [f(x)+g(x)]=f(x)+g(x)dxdy=dxd(u+v)=dxdu+dxdv

积法则

[ f ( x ) g ( x ) ] ′ = f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) d y d x = d ( u v ) d x = u d v d x + v d u d x [f(x)g(x)]'=f(x)g'(x)+f'(x)g(x)\\ \frac{dy}{dx}=\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx} [f(x)g(x)]=f(x)g(x)+f(x)g(x)dxdy=dxd(uv)=udxdv+vdxdu

商法则

[ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) d y d x = d ( u v ) d x = v d u d x − u d v d x v 2 \Big[\frac{f(x)}{g(x)}\Big]'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}\\ \frac{dy}{dx}=\frac{d(\frac uv)}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2} [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)dxdy=dxd(vu)=v2vdxduudxdv

例一

题目

f ( x ) = ( x + 1 ) 2 x 2 + 1 f(x)=\frac{(x+1)^2}{x^2+1} f(x)=x2+1(x+1)2的导数

解答

f ( x ) = x 2 + 2 x + 1 x 2 + 1 = 1 + 2 x x 2 + 1 f(x)=\frac{x^2+2x+1}{x^2+1}=1+\frac{2x}{x^2+1} f(x)=x2+1x2+2x+1=1+x2+12x

u = 2 x , v = x 2 + 1 u=2x,v=x^2+1 u=2x,v=x2+1

d u d x = 2 , d v d x = 2 x \frac{du}{dx}=2,\frac{dv}{dx}=2x dxdu=2,dxdv=2x

用导数运算的商法则
f ′ ( x ) = d y d x = v d u d x − u d v d x v 2 = 2 x ( x 2 + 1 ) − 2 x ⋅ 2 x ( x 2 + 1 ) 2 = 2 x 3 − 4 x 2 + 2 x x 4 + 2 x 2 + 1 \begin{align} f'(x)=\frac{dy}{dx}&=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\\ &=\frac{2x(x^2+1)-2x\cdot2x}{(x^2+1)^2}\\ &=\frac{2x^3-4x^2+2x}{x^4+2x^2+1}\\ \end{align} f(x)=dxdy=v2vdxduudxdv=(x2+1)22x(x2+1)2x2x=x4+2x2+12x34x2+2x

三角函数的导数(一)

两个重要的极限

lim ⁡ h → 0 sin ⁡ x x = 1 lim ⁡ h → 0 cos ⁡ x − 1 x = 0 \lim_{h\to0}\frac {\sin x} x=1\qquad\lim_{h\to0}\frac{\cos x-1}{x}=0 h0limxsinx=1h0limxcosx1=0

基础三角函数的导数

正弦函数的导数

sin ⁡ ′ ( x ) = d y d x = lim ⁡ h → 0 sin ⁡ ( x + h ) − sin ⁡ ( x ) h = lim ⁡ h → 0 sin ⁡ ( x ) cos ⁡ ( h ) + cos ⁡ ( x ) sin ⁡ ( h ) − sin ⁡ ( x ) h = lim ⁡ h → 0 sin ⁡ ( x ) [ cos ⁡ ( h ) − 1 ] + cos ⁡ ( x ) sin ⁡ ( h ) h = lim ⁡ h → 0 sin ⁡ ( x ) ⋅ cos ⁡ ( h ) − 1 h + cos ⁡ ( x ) sin ⁡ ( h ) h = cos ⁡ ( x ) \begin{align} \sin'(x)=\frac{dy}{dx}&= \lim_{h\to0}\frac{\sin(x+h)-\sin(x)}{h}\\ &=\lim_{h\to0}\frac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}{h}\\ &=\lim_{h\to0}\frac{\sin(x)[\cos(h)-1]+\cos(x)\sin(h)}{h}\\ &=\lim_{h\to0}\sin(x)\cdot\frac{\cos(h)-1}{h}+\cos(x)\frac{\sin(h)}{h}\\ &=\cos(x) \end{align} sin(x)=dxdy=h0limhsin(x+h)sin(x)=h0limhsin(x)cos(h)+cos(x)sin(h)sin(x)=h0limhsin(x)[cos(h)1]+cos(x)sin(h)=h0limsin(x)hcos(h)1+cos(x)hsin(h)=cos(x)

余弦函数的导数

cos ⁡ ′ ( x ) = d y d x = lim ⁡ h → 0 cos ⁡ ( x + h ) − cos ⁡ ( x ) h = lim ⁡ h → 0 cos ⁡ ( x ) cos ⁡ ( h ) − sin ⁡ ( x ) sin ⁡ ( h ) − cos ⁡ ( x ) h = lim ⁡ h → 0 cos ⁡ ( x ) [ cos ⁡ ( h ) − 1 ] − sin ⁡ ( x ) sin ⁡ ( h ) h = lim ⁡ h → 0 cos ⁡ ( x ) ⋅ cos ⁡ ( h ) − 1 h − sin ⁡ ( x ) sin ⁡ ( h ) h = − sin ⁡ ( x ) \begin{align}\cos'(x)=\frac{dy}{dx}&=\lim_{h\to0}\frac{\cos(x+h)-\cos(x)}{h}\\&=\lim_{h\to0}\frac{\cos(x)\cos(h)-\sin(x)\sin(h)-\cos(x)}{h}\\&=\lim_{h\to0}\frac{\cos(x)[\cos(h)-1]-\sin(x)\sin(h)}{h}\\ &=\lim_{h\to0}\cos(x)\cdot\frac{\cos(h)-1}{h}-\sin(x)\frac{\sin(h)}{h}\\&=-\sin(x)\end{align} cos(x)=dxdy=h0limhcos(x+h)cos(x)=h0limhcos(x)cos(h)sin(x)sin(h)cos(x)=h0limhcos(x)[cos(h)1]sin(x)sin(h)=h0limcos(x)hcos(h)1sin(x)hsin(h)=sin(x)

正切函数的导数

u = sin ⁡ ( x ) , v = cos ⁡ ( x ) u=\sin(x),v=\cos(x) u=sin(x),v=cos(x),则 d u d x = cos ⁡ ( x ) , d v d x = − sin ⁡ ( x ) \frac{du}{dx}=\cos(x),\frac{dv}{dx}=-\sin(x) dxdu=cos(x),dxdv=sin(x)
tan ⁡ ′ ( x ) = ( u v ) ′ = v d u d x − u d v d x v 2 = cos ⁡ 2 ( x ) + sin ⁡ 2 ( x ) cos ⁡ 2 ( x ) = 1 cos ⁡ 2 ( x ) = sec ⁡ 2 ( x ) \begin{align} \tan'(x)=\Big(\frac{u}{v}\Big)'&=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\\ &=\frac{\cos^2(x)+\sin^2(x)}{\cos^2(x)}\\ &=\frac1{\cos^2(x)}\\ &=\sec^2(x) \end{align} tan(x)=(vu)=v2vdxduudxdv=cos2(x)cos2(x)+sin2(x)=cos2(x)1=sec2(x)

余切函数的导数

u = cos ⁡ ( x ) , v = sin ⁡ ( x ) u=\cos(x),v=\sin(x) u=cos(x),v=sin(x),则 d u d x = − sin ⁡ ( x ) , d v d x = cos ⁡ ( x ) , \frac{du}{dx}=-\sin(x),\frac{dv}{dx}=\cos(x), dxdu=sin(x)dxdv=cos(x),
cot ⁡ ′ ( x ) = ( u v ) ′ = v d u d x − u d v d x v 2 = − sin ⁡ 2 ( x ) − cos ⁡ 2 ( x ) sin ⁡ 2 ( x ) = − 1 sin ⁡ 2 ( x ) = − csc ⁡ 2 ( x ) \begin{align} \cot'(x)=\Big(\frac{u}{v}\Big)'&=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\\ &=\frac{-\sin^2(x)-\cos^2(x)}{\sin^2(x)}\\ &=-\frac1{\sin^2(x)}\\ &=-\csc^2(x) \end{align} cot(x)=(vu)=v2vdxduudxdv=sin2(x)sin2(x)cos2(x)=sin2(x)1=csc2(x)

正割函数的导数

u = cos ⁡ x u=\cos x u=cosx,则 d u d x = − sin ⁡ ( x ) , d y d u = − 1 u 2 \frac{du}{dx}=-\sin(x),\frac{dy}{du}=-\frac{1}{u^2} dxdu=sin(x),dudy=u21
sec ⁡ ′ ( x ) = d y d x = d y d u ⋅ d u d x = sin ⁡ ( x ) cos ⁡ 2 ( x ) = tan ⁡ ( x ) sec ⁡ ( x ) \sec'(x)=\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=\frac{\sin(x)}{\cos^2(x)}=\tan(x)\sec(x) sec(x)=dxdy=dudydxdu=cos2(x)sin(x)=tan(x)sec(x)

余割函数的导数

u = sin ⁡ x u=\sin x u=sinx,则 d u d x = cos ⁡ ( x ) , d y d u = − 1 u 2 \frac{du}{dx}=\cos(x),\frac{dy}{du}=-\frac{1}{u^2} dxdu=cos(x),dudy=u21
csc ⁡ ′ ( x ) = d y d x = d y d u ⋅ d u d x = − cos ⁡ ( x ) sin ⁡ 2 ( x ) = cot ⁡ ( x ) csc ⁡ ( x ) \csc'(x)=\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=-\frac{\cos(x)}{\sin^2(x)}=\cot(x)\csc(x) csc(x)=dxdy=dudydxdu=sin2(x)cos(x)=cot(x)csc(x)

例一

题目

f ( x ) = x sin ⁡ ( 5 x ) f(x)=x\sin(5x) f(x)=xsin(5x)的导数

解答

U = x , V = sin ⁡ ( 5 x ) U=x,V=\sin(5x) U=x,V=sin(5x)

u = 5 x u=5x u=5x d u d x = 5 , d V d u = − cos ⁡ ( u ) \frac{du}{dx}=5,\frac{dV}{du}=-\cos(u) dxdu=5,dudV=cos(u)
d V d x = d V d u ⋅ d u d x = − 5 cos ⁡ ( 5 x ) \frac{dV}{dx}=\frac{dV}{du}\cdot\frac{du}{dx}=-5\cos(5x) dxdV=dudVdxdu=5cos(5x)
因为 d U d x = 1 , d V d x = − 5 cos ⁡ ( 5 x ) \frac{dU}{dx}=1,\frac{dV}{dx}=-5\cos(5x) dxdU=1,dxdV=5cos(5x)
f ′ ( x ) = U d V d x + V d U d x = − 5 x cos ⁡ ( 5 x ) + sin ⁡ ( 5 x ) f'(x)=U\frac{dV}{dx}+V\frac{dU}{dx}=-5x\cos(5x)+\sin(5x) f(x)=UdxdV+VdxdU=5xcos(5x)+sin(5x)

指数函数与对数函数的导数

e e e的定义

假设你在一家银行里存钱,若一笔存在银行里的时间为一年的 1 n \frac 1n n1,你将获得本金 1 n \frac 1n n1的利息,很明显你一钱存越多次能获得的利息越多(假设你每次存钱),但这是无上限的吗?很显然是不可能的。

我们可以列表

n n n 1 1 1 2 2 2 3 3 3 4 4 4 ⋯ \cdots 100 100 100 ⋯ \cdots 1 0 4 10^4 104
连本利率 2 2 2 2.25 2.25 2.25 2.37 2.37 2.37 2.4414 2.4414 2.4414 ⋯ \cdots 2.704813 2.704813 2.704813 ⋯ \cdots 2.7181459 2.7181459 2.7181459

当你的 n n n足够大时,连本利率的增长速度变得极为缓慢(从 100 100 100增长到 1 0 4 10^4 104,连本利率只增加了 0.013 0.013 0.013左右),它因该收敛与某个常数。

这样我们引出了自然常数 e e e,它定义为 e = lim ⁡ n → ∞ ( 1 + 1 n ) n e=\lim_{n\to\infty}(1+\frac1n)^n e=limn(1+n1)n,它约等于 2.718281 2.718281 2.718281,我们待会会说明为什么被称为自然常数。

指数函数的导数

我们先求 f ( x ) = a x f(x)=a^x f(x)=ax的导数

用导数的定义式来求
f ′ ( x ) = d y d x = lim ⁡ h → 0 a x + h − a x h = lim ⁡ h → 0 a x ( a h − 1 ) h = a x lim ⁡ h → 0 a h − 1 h \begin{align} f'(x)=\frac{dy}{dx}&=\lim_{h\to 0}\frac{a^{x+h}-a^x}{h}\\ &=\lim_{h\to 0}\frac{a^x(a^h-1)}{h}\\ &=a^x\lim_{h\to0}\frac{a^h-1}{h}\\ \end{align} f(x)=dxdy=h0limhax+hax=h0limhax(ah1)=axh0limhah1
t = a h − 1 t=a^h-1 t=ah1 h = log ⁡ a t + 1 h=\log_a{t+1} h=logat+1,当 lim ⁡ h → 0 t = 0 \lim_{h\to0}t=0 limh0t=0
f ′ ( x ) = a x lim ⁡ t → 0 t log ⁡ a t + 1 = a x lim ⁡ t → 0 1 log ⁡ a ( 1 + t ) 1 t = a x 1 log ⁡ a e = a x ln ⁡ a ln ⁡ e = a x ln ⁡ a \begin{align} f'(x)&=a^x\lim_{t\to0}\frac{t}{\log_at+1}\\ &=a^x\lim_{t\to0}\frac{1}{\log_a(1+t)^{\frac1t}}\\ &=a^x\frac{1}{\log_ae}\\ &=a^x\frac{\ln a}{\ln e}\\ &=a^x\ln a \end{align} f(x)=axt0limlogat+1t=axt0limloga(1+t)t11=axlogae1=axlnelna=axlna

对数函数的导数

我们讨论 f ( x ) = log ⁡ a x f(x)=\log_ax f(x)=logax的导数

用导数的定义式来求
$$
\begin{align}
f’(x)=\frac{dy}{dx}&=\lim_{h\to0}\frac{\log_a(x+h)-\log_ax}{h}\
&=\lim_{h\to0}\frac{\log_a(1+\frac h x)}{h}\
&=\lim_{h\to 0}\log_a(1+\frac hx)^{\frac{1}{h}}\
&=\lim_{h\to 0}\frac 1x\log_a(1+\frac hx)^{\frac xh}\

\end{align}
KaTeX parse error: Can't use function '$' in math mode at position 3: 令$̲t=\frac xh$,当$\…
\begin{align}
f’(x)&=\lim_{t\to\infty}\frac1x\log(1+\frac1t)^t\
&=\frac1x\log_ae\
&=\frac1x\cdot\frac{\ln e}{\ln a}=\frac{1}{x\ln a}
\end{align}
$$

隐函数求导

隐函数的定义

如果方程 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0能确定 y y y x x x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量 x x x y y y,对于某一范围内的 x x x的每一个值, y y y都有确定的值和它对应, y y y就是 x x x的函数。这种关系一般用 y = f ( x ) y=f(x) y=f(x)即显函数来表示。 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0即隐函数是相对于显函数来说的。

隐函数的求导方法

我们可以举出一个相当经典的隐函数 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1

我们尝试求出它在点 ( x , y ) (x,y) (x,y)点的切线斜率 d y d x \frac{dy}{dx} dxdy

首先我们把 x x x y y y放在等号两边得 x 2 − 1 = − y 2 x^2-1=-y^2 x21=y2

我们对两边同时求导左边是相当方便的,可得 ( x 2 − 1 ) ′ = 2 x (x^2-1)'=2x (x21)=2x

但我们对右边求导时出现了问题我们要求的是 d y d x \frac{dy}{dx} dxdy但我们的变化量为 d y dy dy

我们可使用链式求导法则 d ( − y 2 ) d y d y d x = − 2 y d y d x \frac{d(-y^2)}{dy}\frac{dy}{dx}=-2y\frac{dy}{dx} dyd(y2)dxdy=2ydxdy

整理后为 2 x = − 2 y d y d x 2x=-2y\frac{dy}{dx} 2x=2ydxdy d y d x = − x y \frac{dy}{dx}=-\frac xy dxdy=yx

通过两边同时对 x x x求导我们便解决了隐函数的求导问题

例一

题目

f : e x y 3 − x 2 + 2 y = 1 f:e^xy^3-x^2+2y=1 f:exy3x2+2y=1,求 d y d x \frac{dy}{dx} dxdy, d 2 y d x 2 \frac {d^2y}{dx^2} dx2d2y

解答

d y d x \frac{dy}{dx} dxdy,我们先对 x x x求导,得 e x y 3 + e x 3 y 2 d y d x − 2 x + 2 d y d x = 0 e^xy^3+e^x3y^2\frac{dy}{dx}-2x+2\frac{dy}{dx}=0 exy3+ex3y2dxdy2x+2dxdy=0

可得 d y d x = 2 x − e x y 3 3 e x y 2 + 2 \frac{dy}{dx}=\frac{2x-e^xy^3}{3e^xy^2+2} dxdy=3exy2+22xexy3

d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,对 e x y 3 + e x 3 y 2 d y d x − 2 x + 2 d y d x = 0 e^xy^3+e^x3y^2\frac{dy}{dx}-2x+2\frac{dy}{dx}=0 exy3+ex3y2dxdy2x+2dxdy=0再次对 x x x求导

e x y 3 + 3 e x y 2 d y d x + 3 e x y 2 d y d x + 6 e x y ( d y d x ) 2 + 3 e x y 2 d 2 y d x 2 − 2 + 2 d 2 y d x 2 = 0 e^xy^3+3e^xy^2\frac{dy}{dx}+3e^xy^2\frac{dy}{dx}+6e^xy(\frac{dy}{dx})^2+3e^xy^2\frac{d^2y}{dx^2}-2+2\frac{d^2y}{dx^2}=0 exy3+3exy2dxdy+3exy2dxdy+6exy(dxdy)2+3exy2dx2d2y2+2dx2d2y=0

d 2 y d x 2 = 2 − e x y 3 − 6 e x y 2 d y d x + 6 e x y ( d y d x 2 ) 3 e x y 2 + 2 \frac{d^2y}{dx^2}=\frac{2-e^xy^3-6e^xy^2\frac{dy}{dx}+6e^xy(\frac{dy}{dx}^2)}{3e^xy^2+2} dx2d2y=3exy2+22exy36exy2dxdy+6exy(dxdy2),其中 d y d x = 2 x − e x y 3 3 e x y 2 + 2 \frac{dy}{dx}=\frac{2x-e^xy^3}{3e^xy^2+2} dxdy=3exy2+22xexy3

三角函数求导(二)

反三角函数的导数

反正弦函数的导数

因为 y = arcsin ⁡ ( x ) y=\arcsin(x) y=arcsin(x),所以 x = sin ⁡ ( y ) x=\sin(y) x=sin(y)

我们对 x = sin ⁡ ( y ) x=\sin(y) x=sin(y)关于 x x x进行隐函数求导,得 1 = cos ⁡ ( y ) d y d x 1=\cos(y)\frac{dy}{dx} 1=cos(y)dxdy

因为 x = sin ⁡ ( y ) x=\sin(y) x=sin(y),所以 cos ⁡ ( y ) = ± 1 − x 2 \cos(y)=\pm\sqrt{1-x^2} cos(y)=±1x2

所以 d y d x = ± 1 1 − x 2 \frac{dy}{dx}=\pm\frac{1}{\sqrt{1-x^2}} dxdy=±1x2 1中的一个。我们可以分析 y = arcsin ⁡ ( x ) y=\arcsin(x) y=arcsin(x)的图像

arcsin.png

容易发现 y = arcsin ⁡ ( x ) y=\arcsin(x) y=arcsin(x)是导数恒为正的增函数,所以 d y d x = 1 1 − x 2 \frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}} dxdy=1x2 1

反余弦函数的导数

因为 y = arccos ⁡ ( x ) y=\arccos(x) y=arccos(x),所以 x = cos ⁡ ( y ) x=\cos(y) x=cos(y)

我们对 x = cos ⁡ ( y ) x=\cos(y) x=cos(y)关于 x x x进行隐函数求导,得 1 = − sin ⁡ ( y ) d y d x 1=-\sin(y)\frac{dy}{dx} 1=sin(y)dxdy

因为 x = cos ⁡ ( y ) x=\cos(y) x=cos(y),所以 sin ⁡ ( y ) = ± 1 − x 2 \sin(y)=\pm\sqrt{1-x^2} sin(y)=±1x2

所以 d y d x = ± 1 1 − x 2 \frac{dy}{dx}=\pm\frac{1}{\sqrt{1-x^2}} dxdy=±1x2 1中的一个。我们可以分析 y = arccos ⁡ ( x ) y=\arccos(x) y=arccos(x)的图像

arccos.png

容易发现 y = arccos ⁡ ( x ) y=\arccos(x) y=arccos(x)是导数恒为负的减函数,所以 d y d x = − 1 1 − x 2 \frac{dy}{dx}=-\frac{1}{\sqrt{1-x^2}} dxdy=1x2 1

反正切/余切函数的导数

因为 y = arctan ⁡ ( x ) y=\arctan(x) y=arctan(x),所以 x = tan ⁡ ( y ) x=\tan(y) x=tan(y)

我们对 x = tan ⁡ ( y ) x=\tan(y) x=tan(y)关于 x x x隐函数求导得 d y d x = 1 sec ⁡ 2 ( y ) = 1 x 2 + 1 \frac{dy}{dx}=\frac{1}{\sec^2(y)}=\frac{1}{x^2+1} dxdy=sec2(y)1=x2+11

同理 y = cot ⁡ − 1 ( x ) y=\cot^{-1}(x) y=cot1(x),所以 x = cot ⁡ ( y ) x=\cot(y) x=cot(y)

我们对 x = cot ⁡ ( y ) x=\cot(y) x=cot(y)关于 x x x隐函数求导,得 d y d x = − 1 csc ⁡ 2 ( y ) = − 1 1 + x 2 \frac{dy}{dx}=-\frac{1}{\csc^2(y)}=-\frac{1}{1+x^2} dxdy=csc2(y)1=1+x21

反正割/余割函数的导数

我们与上面做法相同,由 y = sec ⁡ − 1 ( x ) y=\sec^{-1}(x) y=sec1(x),所以 x = sec ⁡ ( y ) x=\sec(y) x=sec(y)

我们对 x = sec ⁡ ( y ) x=\sec(y) x=sec(y)对于 x x x隐函数求导得 d y d x = 1 sec ⁡ ( y ) tan ⁡ ( y ) = 1 ± x x 2 − 1 \frac{dy}{dx}=\frac{1}{\sec(y)\tan(y)}=\frac{1}{\pm x\sqrt{x^2-1}} dxdy=sec(y)tan(y)1=±xx21 1

又出现了考虑正负的情况,我们可以分析图像

2022-04-11 16-42-00屏幕截图.png

发现它是恒正的,可得 sec ⁡ − 1 ( x ) ′ = 1 ∣ x ∣ x 2 − 1 \sec^{-1}(x)'=\frac{1}{|x|\sqrt{x^2-1}} sec1(x)=xx21 1

同理可得 csc ⁡ − 1 ( x ) ′ = − 1 ∣ x ∣ x 2 − 1 \csc^{-1}(x)'=-\frac{1}{|x|\sqrt{x^2-1}} csc1(x)=xx21 1

双曲函数的导数

我们只粗略的讲双曲函数,因为他实际上是指数函数的求导,所以十分简单,我们放在最后讲

双曲正弦/余弦函数的导数

sinh ⁡ ( x ) ′ = ( e x − e − x 2 ) ′ = e x + e − x 2 = cosh ⁡ ( x ) cosh ⁡ ( x ) ′ = ( e x + e − x 2 ) ′ = e x − e − x 2 = sin ⁡ ( x ) \sinh(x)'=\Big(\frac{e^x-e^{-x}}{2}\Big)'=\frac{e^x+e^{-x}}{2}=\cosh(x)\\ \cosh(x)'=\Big(\frac{e^x+e^{-x}}{2}\Big)'=\frac{e^x-e^{-x}}{2}=\sin(x) sinh(x)=(2exex)=2ex+ex=cosh(x)cosh(x)=(2ex+ex)=2exex=sin(x)

其它双曲函数的导数

和三角函数一样的,我们可以通过 sinh ⁡ \sinh sinh cosh ⁡ \cosh cosh来定义其它双曲函数,结论如下,你可以自己推出来。
tanh ⁡ ( x ) ′ = 1 cos ⁡ 2 ( x ) , coth ⁡ ( x ) = − 1 sinh ⁡ 2 ( x ) \tanh(x)'=\frac{1}{\cos^2(x)},\coth(x)=-\frac{1}{\sinh^2(x)} tanh(x)=cos2(x)1coth(x)=sinh2(x)1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值